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ABSTRACT 

Forecasting Economic Aggregates by Disaggregates* 

We explore whether forecasting an aggregate variable using information on its 
disaggregate components can improve the prediction mean squared error 
over first forecasting the disaggregates and then aggregating those forecasts, 
or, alternatively, over using only lagged aggregate information in forecasting 
the aggregate. We show theoretically that the first method of forecasting the 
aggregate should outperform the alternative methods in population. We 
investigate whether this theoretical prediction can explain our empirical 
findings and analyse why forecasting the aggregate using information on its 
disaggregate components improves forecast accuracy of the aggregate 
forecast of euro area and US inflation in some situations, but not in others. 
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1 Introduction

Forecasts of macroeconomic aggregates are employed by the private sector, governmental and

international institutions as well as central banks. Recently there has been renewed interest in

the effect of contemporaneous aggregation in forecasting. For example, one issue has been the

potential improvement in forecast accuracy delivered by forecasting the component indices and

aggregating such forecasts, as against simply forecasting the aggregate itself.1 The theoreti-

cal literature shows that aggregating component forecasts improves over directly forecasting

the aggregate if the data generating process is known. If the data generating process is not

known and the model has to be estimated, it depends on the unknown data generating process

whether the disaggregated approach improves the accuracy of the aggregate forecast. It might

be preferable to forecast the aggregate directly. Since in practice the data generating process

is not known, it remains an empirical question whether aggregating forecasts of disaggregates

improves forecast accuracy of the aggregate of interest. For example, the results in Hubrich

(2005) indicate that aggregating forecasts by component does not necessarily help to forecast

year-on-year Eurozone inflation twelve months ahead.

In this paper, we suggest an alternative use of disaggregate information to forecast the aggre-

gate variable of interest, that is to include the disaggregate information or disaggregate variables

in the model for the aggregate as opposed to forecasting the disaggregate variables separately

and aggregating those forecasts.

We show that disaggregating elements of the information setIT−1 into their components

cannot lower and might improve predictability of a given aggregateyT . We focus on disag-

gregation across variables (such as sub-indices of a price measure). Disaggregation may also

be considered across space (e.g., regions of an economy), time (higher frequencies), or all of

these. The predictability concept considered in this paper concerns a property in population of

the variable of interest in relation to an information set. A related predictability concept is dis-

cussed by Diebold & Kilian (2001). Whereas that paper considers measuring predictability of

different variables based on one information set, we investigate predictability of the same vari-

1See e.g. Espasa, Senra & Albacete (2002), Hubrich (2005) and Benalal, Diaz del Hoyo, Landau, Roma &

Skudelny (2004) for forecasting euro area inflation; see also Fair & Shiller (1990) for a related analysis for US

GNP). Contributions to the theoretical literature on aggregation versus disaggregation in forecasting can be found

in e.g. Grunfeld & Griliches (1960), Kohn (1982), Lütkepohl (1984, 1987), Pesaran, Pierse & Kumar (1989),

Van Garderen, Lee & Pesaran (2000); see also Granger (1990) for a survey on aggregation of time-series variables

and L̈utkepohl (2005) for a recent review on forecasting aggregated processes by VARMA models.
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able based on different information sets. In contrast to predictability as a property in population,

we use ’forecastability’ to refer to the improvement in forecast accuracy related to the sample

information given the unconditional moments of a variable. Potential misspecification of the

forecast model due to model selection and estimation uncertainty as well as data measurement

errors and structural breaks will affect the accuracy of the resulting forecast and help to explain

why theoretical results on predictability are not confirmed in empirical applications (see also

Hendry (2004) and Clements & Hendry (2004a)).

In previous work on disaggregation in forecasting all disaggregates are considered and

model selection is restricted to selecting the VAR order. Our proposal of including all or a

selected number of disaggregate variables in the aggregate model gives rise to a classical model

selection problem, complementing previous literature on the role of model selection in dis-

aggregation and forecasting. Although the predictability theory provides a useful guide for

forecasting, we need to empirically investigate the usefulness of different methods to include

disaggregate information for forecasting euro area and US inflation. Thereby we extend the

results in Hubrich (2005) and relate our empirical findings to the analytical results presented in

the previous sections.

The paper is organised as follows. First, Section 2 briefly reviews the notion of (un-) pre-

dictability and its properties most relevant to our subsequent analysis. Then we show that adding

lagged information on disaggregates to a model of an aggregate must improve predictability.

However, an improvement in predictability is a necessary, but not sufficient condition for an

improvement in the forecast accuracy. In Section 4, we discuss the effect of model selection

and estimation uncertainty on the forecast accuracy in a conditional model with particular ref-

erence to forecasting the aggregate when disaggregate information is included in the aggregate

model. In Section 5, we investigate in a simulated out-of-sample experiment whether adding

lagged values of the sub-indices of the Harmonized Index of Consumer Prices (HICP) to a

model of the aggregate improves the accuracy of forecasts of that aggregate relative to forecast-

ing the aggregate HICP only using lagged aggregate information, or aggregating forecasts of

those sub-indices. Section 6 concludes.

2 Improving predictability by disaggregation

In this section the notion of predictability and its properties most relevant to our subsequent

analysis are reviewed first, including the properties of predictions from a reduced information
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set. Then we address the issue of predictability and disaggregation.2

2.1 Predictability and its properties

A non-degenerate vector random variableνt is unpredictable with respect to an information

set It−1 (which always includes the sigma-field generated by the past ofνt) over a period

T = {1, . . . , T} if its conditional distributionD�t (νt|It−1) equals its unconditionalD�t (νt):

D�t (νt | It−1) = D�t (νt) ∀t ∈ T . (1)

Unpredictability, therefore, is a property ofνt in relation toIt−1 intrinsic toνt. Predictability

requires combinations withIt−1, as for example in:

yt = φt (It−1,νt) (2)

soyt depends on both the information set and the innovation component. Then:

Dyt (yt | It−1) 6= Dyt (yt) ∀t ∈ T . (3)

The special case of (2) relevant here (after appropriate data transformations, such as logs) is

predictability in mean:

yt = ft (It−1) + νt. (4)

Other cases of (2) which are potentially relevant are considered in Hendry (2004).

In (4), yt is predictable in mean even ifνt is not as:

Et [yt | It−1] = ft (It−1) 6= Et [yt] ,

in general. Since:

Vt [yt | It−1] < Vt [yt] when ft (It−1) 6= 0 (5)

predictability ensures a variance reduction.

Predictability is obviously relative to the information used. Given an information set,Jt−1 ⊂
It−1 when the process to be predicted isyt = ft (It−1) + νt as in (4), less accurate predictions

will result, but they will remain unbiased. SinceEt [νt|It−1] = 0:

Et [νt | Jt−1] = 0,

2The theory of economic forecasting in Clements & Hendry (1998, 1999) for non-stationary processes subject

to structural breaks, where the forecasting model differs from the data generating mechanism, is rooted in the

properties of (un-)predictability. Hendry (2004) considers the foundations of this predictability concept in more

detail.
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so that:

Et [yt | Jt−1] = Et [ft (It−1) | Jt−1] = gt (Jt−1) ,

say. Letet = yt − gt (Jt−1), then, providingJt−1 is a proper information set containing the

history of the process:

Et [et | Jt−1] = 0,

soet is a mean innovation with respect toJt−1.

However, as:

et = (ft (It−1)− gt (Jt−1)) + νt = wt−1 + νt

(say) whereE [wt−1ν
′
t] = 0 then:

Et [et | It−1] = ft (It−1)− Et [gt (Jt−1) | It−1] = ft (It−1)− gt (Jt−1) 6= 0.

As a consequence of this failure ofet to be an innovation with respect toIt−1:

E [ete
′
t] = E

[
(νt + wt−1) (νt + wt−1)

′]

= E [νtν
′
t] + E

[
νtw

′
t−1

]
+ E [wt−1ν

′
t] + E

[
wt−1w

′
t−1

]

= E [νtν
′
t] + E

[
wt−1w

′
t−1

]

≥ E [νtν
′
t]

where strict equality follows unlesswt−1 = 0 ∀t.
Nevertheless, that predictions fromJt−1 remain unbiased on the reduced information set

suggests that, by itself, incomplete information is not fatal to the forecasting enterprise.

In particular, disaggregating components ofIT−1 into their elements cannot lower pre-

dictability of a given aggregateyT , where such disaggregation may be across space (e.g.,

regions of an economy), time (higher frequency), variables (such as sub-indices of a price

measure), or all of these. These attributes suggest forecasting using general models to be a

preferable strategy, and provide a formal basis for including as much information as possi-

ble, being potentially consistent with many-variable ‘factor forecasting’ (see e.g. Bai (2003),

Bai & Ng (2002), Forni, Hallin, Lippi & Reichlin (2000, 2005), and Stock & Watson (2002a,

2002b) , and with the benefits claimed in the ‘pooling of forecasts’ literature (e.g., Clemen,

1989; Clements & Hendry, 2004b, for a recent theory). Although such results run counter to the

common finding in forecasting competitions that ‘simple models do best’ (see e.g. Makridakis

& Hibon, 2000; Allen & Fildes, 2001; Fildes & Ord, 2002), Clements & Hendry (2001) suggest

that simplicity is confounded with robustness.
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2.2 Predictability of the aggregate and disaggregation

The previous section concerns adding content to the information setJt−1 to deliverIT−1. One

form of adding information is via disaggregation of the target variableyT into its components

yi,T althoughDyT+1
(yT+1|·) remains the target of interest. We consider only two components

and a scalar process to illustrate the analysis, which clearly generalizes to many components

and a vector process.

Consider a scalaryt to be forecast, composed of:

yT+1 = w1,T+1y1,T+1 + w2,T+1y2,T+1 (6)

with the weightsw1,T+1 andw2,T+1 = (1 − w1,T+1) for each of the two components. Note

that the weights are allowed to vary over time. It may be thought that, when theyi,t themselves

depend in different ways on the general information setIt−1, which by construction includes

theσ–field generated by the past of theyi,t−j, predictability could be improved by forecasting

the disaggregates and aggregating those forecasts to obtain those foryT+1. However, let:

ET+1 [yi,T+1 | IT ] = δ′i,T+1IT (7)

which is the conditional expectation of each componentyi,T+1 and hence is the minimum mean-

square error (MSE) predictor. Then, taking conditional expectations in (6), aggregating the two

terms in (7) deliversET+1[yT+1|IT ]:

ET [yT+1 | IT ] =
2∑

i=1

wi,T+1ET+1 [yi,T+1 | IT ] =
2∑

i=1

wi,T+1δ
′
i,T+1IT = λ′T+1IT (say).

By way of comparison, consider predictingyT+1 directly fromIT :

ET+1 [yT+1 | IT ] = φ′
T+1IT , (8)

soφT+1 = λT+1 with a prediction error:

yT+1 − ET+1 [yT+1 | IT ] = vT+1 (9)

which is unpredictable fromIT and hence nothing is lost predictingyT+1 directly instead of

aggregating component predictions once the general information setIT is used. In practice,

if both the weightswi,T+1 and the coefficients of the component modelsδ′i,T+1 change more

than the coefficients of the aggregate modelλT+1, forecasting the aggregate directly could
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well be more accurate than aggregating the component forecasts. Thus, the key issue in (say)

aggregate inflation prediction is not predicting the component price changes, but including those

components in the information setIT . This result implies that weights are not needed for

aggregating component forecasts, and also saves the additional effort of specifying disaggregate

models for the components.

Including the components in the information setIT is quite distinct from restricting infor-

mation to lags of aggregate inflation, an information set we denote byJT . Then:

ET+1 [yT+1 | JT ] = ψ′
T+1JT ,

so that usingyT+1 from (8) and (9) gives:

yT+1 − ET+1 [yT+1 | JT ] = φ′
T+1IT −ψ′

T+1JT + vT+1, (10)

which must have largerMSE than (9), since according to Section 2.1, although the predictions

based onIT andJT are both unbiased, the prediction based on the smaller information set

JT , here only including the lags of aggregate inflation and no disaggregate information, is less

accurate, and has a larger variance than the forecast based onIT . If yT+1 was unpredictable

from both information sets, i.e.ψT+1 = φT+1 = 0, then (9) and (10) would have equalMSE.

3 Forecasting the aggregate: Does disaggregate information

help?

In this section we consider forecasting the aggregate if the true data generating process (DGP)

is a VAR(1) and the aggregate is a weighted average of the disaggregate components. There are

three possible methods to forecast the aggregate if the information set contains the aggregate

and disaggregate components: First, forecasting the disaggregates by lagged disaggregates and

then aggregating those forecasts; second, forecasting the aggregate directly by the lags of the

aggregate; and third we can forecast the aggregate not only by including lags of the aggregate,

but also lags of the disaggregates in the aggregate model. The first and second method has been

considered in previous literature on disaggregation and forecasting, whereas our paper proposes

the third method to forecast the aggregate.

In the following, we elaborate on the results in the previous section by investigating whether

forecasting the aggregate by disaggregates improves forecast accuracy over the other methods
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under the assumption that the true DGP is known or, alternatively, is not known and has to be

approximated.

Let the DGP be a vector autoregression of order one in the componentsyi,t:

(
y1,t

y2,t

)
=

(
π11 π12

π21 π22

)(
y1,t−1

y2,t−1

)
+

(
v1,t

v2,t

)
(11)

whereE[vt] = 0, E[vtv
′
t] = Σv andE[vtv

′
s] = 0 for all s 6= t. Furthermore,yt = w1,ty1,t +

(1− w1,t) y2,t, as in a price index, where weights shift with value shares, leading to:

yt = w1,t [(π11 − π21) y1,t−1 + (π12 − π22) y2,t−1] + π21y1,t−1 + π22y2,t−1

+w1,tv1,t + (1− w1,t) v2,t.
(12)

3.1 Disaggregate forecasting model: True disaggregate process known

The disaggregate forecasting model for known parameters is:

(
ŷ1,T+1|T
ŷ2,T+1|T

)
=

(
π11 π12

π21 π22

)(
y1,T

y2,T

)
,

with:

ŷT+1|T = w1,T+1ŷ1,T+1|T + w2,T+1ŷ2,T+1|T .

Thus, the forecast error from forecasting the disaggregate components and aggregating those

forecasts is:

yT+1 − ŷT+1|T = w1,T+1

(
y1,T+1 − ŷ1,T+1|T

)
+ w2,T+1

(
y2,T+1 − ŷ2,T+1|T

)

= w1,T+1v1,T+1 + w2,T+1v2,T+1

(13)

which is unpredictable, independent of whether the weights are known or not known.

3.2 Aggregate forecasting model with known disaggregate process pa-

rameters

In contrast to the first example where the disaggregate forecasting model is fitted to the process,

consider restricting the information set underlying the forecasting model to lags ofyt alone, with

no disaggregates used. Furthermore, the true aggregate process is assumed known so that the

true parameters of the aggregate forecasting model are known to the forecaster. In the following,
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to simplify the presentation, it is assumed thatw1,t = w2,t = 1,3 so thatyt = y1,t+y2,t. Then the

aggregateyt based on the true disaggregate process (11) can be represented by an ARMA(2,1)

process (for a proof see e.g. Lütkepohl, 1987, Ch.4,1984a).

The VAR in (11) can be written asΠ(L)yt = vt:

(
1− π11L −π12L

−π21L 1− π22L

)(
y1,t

y2,t

)
=

(
v1,t

v2,t

)
. (14)

Multiplying (14) by the adjointΠ(L)∗ of the VAR operatorΠ(L) gives:

(
1− a1 − a2L

2 0

0 1− a1 − a2L
2

)(
y1,t

y2,t

)
=

(
1− π22L π12L

π21L 1− π11L

)(
v1,t

v2,t

)
. (15)

Furthermore, multiplying (15) by the vector of weightsF = (1, 1) of the disaggregate compo-

nents entails:

(1− a1L− a2L
2)yt = (1− b1L)v1,t + (1− b2L)v2,t (16)

with a1 = π11 +π22, a2 = π12π21−π11π22, b1 = π21 +π22 andb2 = π12 +π11. It can be shown

that the right-hand side of expression (16) is a process with an MA(1) representation, so that

the aggregate process has an ARMA(2,1) representation:(1− a1L− a2L
2)yt = (1− γL)ut.4

The model in (16) is used as a forecasting model based on the information set restricted to

the aggregate:

ŷT+1 = a1yT + a2yT−1 + v1,T+1 − b1v1,T + v2,T+1 − b2v2,T (17)

To derive the forecast error made, recall that the aggregate isyt = y1,t + y2,t. Then (16) entails:

yt = a1y1,t−1 + a2y1,t−2 + a1y2,t−1 + a2y2,t−2

+v1,t − b1v1,t−1 + v2,t − b2v2,t−1

(18)

Since in this section, we have assumed thatw1,t = w2,t = 1 for ease of exposition, the disag-

gregate process in (11) simplifies to

yt = (π11 + π21) y1,t−1 + (π12 + π22) y2,t−1 + v1,t + v2,t. (19)

3Results are easily extended to the case of different and time-varying component weigths.
4More generally, it has been shown in the literature that, if the disaggregate process follows a VARMA(p, q),

the aggregate process follows an ARMA(p∗, q∗) process withp∗ ≤ (n−m) + 1 × p andq∗ ≤ (n−m)× p + q

with n being the number of variables in the system andm being the rank of the matrix of aggregation weights (see

e.g. L̈utkepohl, 1987, Ch.4).
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Then the forecast error of the disaggregate process is given by the difference between (19) and

(18):
ûT+1|T = yT+1 − ŷT+1|T

= (π11 + π21) y1,T − a1y1,T − a2y1,T−1

+ (π12 + π22) y2,T − a1y2,T − a2y2,T−1

+v1,T+1 + v2,T+1 − v1,T+1 + b1v1,T − v2,T+1 + b2v2,T

= (π11 − π22) y1,T − a2y1,T−1 + (π12 − π11) y2,T − a2y2,T−1

+b1v1,T + b2v2,T

which will not be unpredictable in general. The entailed restrictions are of the following form5:

π21 − π22 = 0

π12 − π11 = 0

a2 = −π11π22 − π12π21 = 0

These restrictions will usually not be fulfilled simultaneously, sout will be predictable from

y1,t−i and/ory2,t−i (i = 1, 2).

3.3 Aggregate forecasting model with unknown disaggregate process pa-

rameters

Again, consider restricting the information set to lags ofyt with no disaggregates used. How-

ever, in contrast to the example in Section 3.2, the true disaggregate process is not known.

Consequently, the aggregate process has to be approximated. We assume that the aggregate

is a weighted average of the two disaggregates where the weights are allowed to vary across

components and change over time.

We approximate (11) by an autoregression of the form:

yt = ρyt−1 + ut (20)

where:

ŷT+1|T = ρ̂yT .

Sinceyt = w1,ty1,t + (1− w1,t) y2,t, (20) entails that:

yt = ρw1,t−1y1,t−1 + ρ (1− w1,t−1) y2,t−1 + ut. (21)

5(See e.g., L̈utkepohl, 1984, for the implied restrictions for equality of the aggregate and the disaggregate

forecast model for a more general DGP).
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Thus, the forecast error̂uT+1|T from forecasting the true disaggregate process (11) with an

estimated AR(1) model is given by (12) minus (21):

ûT+1|T = yT+1 − ŷT+1|T
= (w1,T+1 [π11 − π21] + π21 − ρ̂w1,T ) y1,T

+ (w1,T+1 [π12 − π22] + π22 − ρ̂ (1− w1,T )) y2,T

+w1,T+1v1,T+1 + (1− w1,T+1) v2,T+1,

(22)

which will not be unpredictable in general. Even for constant weights, the entailed restrictions

are well known to be of the form:

w1 (π11 − π21 − ρ̂) + π21 = 0

w1 (π12 − π22 + ρ̂) + (π22 − ρ̂) = 0

There is no reason to anticipate thatρ̂ can simultaneously satisfy both requirements (even less

so with time-varying weights), souT+1 will be predictable fromy1,T andy2,T , as in the previous

example where the true aggregate process was known.

These results indicate that it should improve forecast accuracy to include disaggregate in-

formation in the aggregate forecasting model. The additional difficulties in an actual forecast

exercise of the choice of the information set, estimation of unknown parameters, unmodeled

breaks, forecasting the weights, and data measurement errors that the forecaster faces, however,

may be sufficiently large to offset the potential benefits. In the next section the influence of

changes that potentially influence the model selection when considering the disaggregate infor-

mation set are presented analytically. Section 5 presents an empirical analysis for forecasting

euro-area inflation.

4 Adding disaggregates to forecast aggregates

In this section we illustrate how different types of changes, that occur in the real world forecast-

ing environment affect the forecast accuracy of the aggregate.

Let yt denote the vector ofn disaggregate prices with elementsyi,t where we illustrate

using:

yt = Γyt−1 + et (23)

as the DGP for the disaggregates. Letyt = ω′
tyt be the aggregate price index with weightsωt.
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Then pre-multiplying (23) byω′
t:

yt = ω′
tΓyt−1 + ω′

tet = κω′
t−1yt−1 +

(
ω′

tΓ− κω′
t−1

)
yt−1 + ω′

tet

= κyt−1 + (φt − κωt−1)
′ yt−1 + νt (24)

whereφt = Γωt are the parameters of the disaggregates in the aggregate model. In (24) the

aggregateyt depends on lags of the aggregate,yt−1, and the lagged disaggregatesyt−1. Thus,

even if the DGP is (23) at the level of the components, an aggregate model will be systematically

improved by adding disaggregates only to the extent thatφt − κωt−1 = π, i.e. the coefficients

of the disaggregates, are constant, and the elements contribute substantively to the explanation.

The additional role of disaggregate information over just including the lagged aggregate in the

aggregate model (24) is represented by the extent to whichφi,t 6= κωi,t−1 for each variablei.

Four distinct types of change can be distinguished in (24) that will affect the forecasting

accuracy forecasting the aggregate by lags of the aggregate and disaggregates:

a) changes in the price index weightsωt−1 can be due to changes in expenditure shares with

constant correlations between the disaggregates;

b) changes in the second-moment matrix of the disaggregatesyt−1 (i.e., in the regressor corre-

lation structure) can change collinearity, affecting the trade-off between the cost of estimation

and the cost of omission that is central to forecast model selection;

c) changes in the parametersφt of the disaggregates, so the role of the disaggregate regressors

is non-constant; and

d) changes in the autoregressive parameterκ.

All four potential shifts influence the decision of whether or not to include (or model) the dis-

aggregates, and might hamper possible improvements in the forecast of the aggregateyt from

adding disaggregate variablesxi,t to a model with lags of the aggregate. The first three of these

shifts favour an aggregate model as a more robust forecasting device, and could do so even if

κ is not constant. The selection issue in this context, concerns omitting or retaining the disag-

gregates, where changing collinearity over the forecast period affects the trade-off is between

increasing estimation uncertainty by including irrelevant variables on the one hand and the mis-

specification costs of omitting relevant regressors on the other hand. Therefore, the choice of

including some or all disaggregates in the aggregate model relates to a classical model selection

problem. In the empirical analysis we consider a broad range of forecast models and model

selection procedures.
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5 Forecasting euro area and US inflation

In this section, we analyze empirically the relative forecast accuracy of the three methods to

forecast the aggregate investigated analytically in the previous sections. We aim to answer the

following questions: First, does including the disaggregate variables in the aggregate model im-

prove the direct forecast of the aggregate? Second, is including disaggregate information in the

aggregate model better in terms of forecast accuracy than forecasting disaggregate variables and

aggregating those forecasts? Third, does it improve the indirect forecast of the aggregate to in-

clude aggregate information in the component models? We relate the findings to our theoretical

results.

5.1 Data

The euro area data employed in this study include aggregated overall HICP for the euro area as

well as its breakdown into five subcomponents: unprocessed food (puf ), processed food (ppf ),

industrial goods (pi), energy (pe) and services prices (ps).

This particular breakdown into subcomponents has been chosen in accordance with the data

published and analyzed in the ECB Monthly Bulletin.

The data employed are of monthly frequency, starting in 1992(1) until 2001(12). We also

employ an extended data set until 2004(12). The relatively short sample is determined by the

availability of subcomponent data for the euro area and has to be split for the out-of-sample

forecast experiment. Seasonally adjusted data have been chosen6 because of the changing sea-

sonal pattern in some of the HICP subcomponents for some countries due to a measurement

change.7

The euro area month-on-month inflation rates (in decimals) and the year-on-year inflation

rates (in %) of the indices are displayed in Figures 1 and 2, respectively.

We have carried out Augmented Dickey Fuller (ADF) tests for all HICP (sub-) indices (in

logarithms), since Diebold & Kilian (2000) show for univariate models that testing for a unit

root can be useful for selecting forecasting models. The tests are based on the sample from

1992(1) to 2000(12). This is the longest of the recursively estimated samples in the simulated

out-of-sample forecast experiment in Section 5.3. The tests do not reject non-stationarity for

6Except for interest rates, producer prices and HICP energy that do not exhibit a seasonal pattern.
7The data used in this study are taken from the ECB and Eurostat. The seasonal adjustment procedure is based

on Census X-12-ARIMA.
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the levels of all (sub-) indices over the whole period.8 Non-stationarity is rejected for the first

differences of all series except the aggregate HICP and HICP services. For the first differences

of the latter two series, however, non-stationarity is rejected for all shorter recursive estimation

samples up to 2000(8) and 2000(7), respectively. Therefore and because of the low power of

the ADF test HICP (sub-)indices are assumed to be integrated of order one in the analysis and

modeled accordingly in the VAR based forecast comparison.

We compare our results for the euro area with forecasts for the US consumer price index

(CPI; source: Bureau of Labor Statistics). The US all items CPI can be divided into 4 com-

ponents: food, industrial goods, services and energy prices. For comparability with the euro

area results, we also employ seasonally adjusted data for the US.9 For the US we consider

sample periods from 1990 to 2004 and 1980 to 2004, respectively. Figure 3 depicts aggregate

year-on-year inflation for the US.

5.2 Forecast methods and model selection

Different forecasting methods using different model selection procedures are employed for both

direct and indirect forecast methods, i.e., forecasting HICP inflation directly versus aggregating

subcomponent forecasts. We employ simple autoregressive (AR) models where the lag length

is selected by the Schwarz (SIC) and the Akaike (AIC) criterion respectively (see e.g. Inoue &

Kilian, 2005). We include a subcomponent vector autoregressive model (VARsubc) to indirectly

forecast the aggregate by aggregating subcomponent forecasts. We use a VAR including the

aggregate and the components, VARagg,sub, to investigate the hypothesis from Section 2 that

including component information in the aggregate forecast model improves the forecast of the

aggregate. The lag length of the VAR is selected on the basis of theSIC, theAIC and an F-

test.10 We include a VAR where the lags of the aggregate and the components are automatically

chosen usingPcGets, VARagg,sub
Gets (see Hendry & Krolzig, 2003).

We also include results for factor models where factors are estimated from disaggregate

price information by Maximum Likelihood (see Lawley & Maxwell (1971)) using an EM al-

8The ADF test specification includes a constant and a linear trend for the levels and first differences. The

number of lags included is chosen according to the largest significant lag on a 5% significance level.
9Seasonal adjustment is based on X12-ARIMA, as in the euro area.

10It should be noted that due to the large number of parameters in the high-dimensional VARs the maximum lag

order was chosen on the basis of a rough rule such that the total number of parameters in the system would not

exceed half the sample size.
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gorithm (see e.g. Dempster, Laird & Rubin (1977)).11 Since the cross-sectional dimension of

our information set of disaggregate price components is small, principal component analysis

and dynamic principal component analysis as in Bai (2003), Bai & Ng (2002), Forni et al.

(2000, 2005), and Stock & Watson (2002a, 2002b) would not provide consistent estimators of

the factors.12

5.3 Simulated out-of-sample forecast comparison

5.3.1 The experiment

A simulated out-of-sample forecast experiment is carried out to evaluate the relative forecast

accuracy of alternative methods to forecast aggregate euro area and US inflation using informa-

tion on its disaggregate components as opposed to aggregating the forecasts of subcomponent

models or forecasting the aggregate only using aggregate information. One to twelve step ahead

forecasts are performed based on different linear time series models estimated on recursive sam-

ples. The main criterion for the comparison of the forecasts employed in this study, as in a large

part of the literature on forecasting, is the root mean square forecast error (RMSFE).

5.3.2 Aggregate and disaggregate information in VARs

Table 1 presents the comparison of the relative forecast accuracy measured in terms of RMSFE

of year-on-year (headline) euro area inflation of the direct forecast of aggregate inflation (∆12p̂
agg)

and the indirect forecast of aggregate inflation, i.e. the aggregated forecasts of the sub-indices

(∆12p̂
agg
sub). Various model selection procedures are applied to AR and VAR models. Multi-

step forecasts in this section are derived in an iterative procedure. The results for 1-,6- and

12-months ahead forecasts are presented.

First we compare methods only based on aggregate information as opposed to forecast meth-

ods for the aggregate including disaggregate variables in addition (see Table 1, column for direct

forecast for each forecast horizon). Within the framework of the general theory of prediction

we have shown that including disaggregate variables in the aggregate model does improve pre-

dictability of a variable (see Section 2). We find that the direct forecast using a VAR including

11We thank Dominico Giannone for providing the Matlab code for this algorithm.
12For treatments of classical factor models when the cross-sectional dimensionn is small, see e.g. Anderson

(1984), Geweke (1977), Sargent & Sims (1977); see Doz, Giannone & Reichlin (2005) for maximum likelihood

estimation of factor models with largen.
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the aggregate and subcomponents where the variables are selected by PcGets, VARagg,sub
Gets , per-

forms slightly better inRMSFE terms 1 month ahead than directly forecasting the aggregate

with an AR model only including lagged aggregate information with the lag length determined

by the SIC criterion. Thus, ourRMSFE results for the VARagg,sub
Gets for h = 1 confirm this pre-

dictability result in a forecast experiment. However, the model including the aggregate and all

subcomponents, VARagg,sub
(1) does not provide a more accurate forecast of the aggregate than the

autoregressive models ARSIC and ARAIC .

Furthermore, we investigate the accuracy of forecasting the aggregate directly including

disaggregate variables relative to the forecast accuracy of indirectly forecasting the aggregate

by aggregating component forecasts based on an AR model or a subcomponent VAR,V ARsub,

(Table 1), i.e., the way previous literature has taken disaggregate variables into account (see e.g.

Lütkepohl (1984, 1987), Hubrich (2005)). The VAR model that outperforms the other direct

forecast methods of the aggregate, VARagg,sub
Gets , also exhibits higher forecast accuracy for the

indirect forecast than all other methods forh = 1. Thus, including aggregate variables in the

disaggregate model improves forecast performance for short horizons. The VARagg,sub
Gets does also

outperform the VARagg,sub
(1) , where the variables and lag length are the same across the aggregate

and components, forh = 1. Therefore, selection pays at short horizons in this context.

Overall, the direct forecast including the aggregate and subcomponents is best for 1 month

ahead forecasts. That confirms within a forecasting set-up the results derived with respect to

predictability in Section 2, i.e. that forecasting the aggregate directly including disaggregate

information in the aggregate model might perform better than aggregating component forecasts.

Figure 4 (upper two panels) shows that the one month ahead forecasts from the different direct

and indirect methods that perform either best or worst in RMSFE terms are very close to actual

year-on-year inflation. The differences between the different methods for one month ahead

forecasts appear to be quite small. The six months ahead forecasts of year-on-year inflation

(Figure 4, lower two panels) do generally relatively well. The graphs show that the differences

in RMSFE terms between some of the forecasts are relevant to be considered when choosing

the forecasting model.

More important from a monetary policy point of view is the 12 months ahead forecast. Here

we find that the direct forecast including disaggregate information (VARagg,sub
(1) ) is clearly better

than the indirect forecast based on AR or VAR models of the components. The low forecast

accuracy of aggregating subcomponent models is analyzed in Hubrich (2005), and it is found

that this can be related to unexpected shocks that occur in the forecast period and affect some
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or all components in the same direction so that forecast errors do not cancel. Furthermore,

predictability in the sense we have defined in Section 2.1 is low for some component series

and their unconditional variance is large. Consequently they are very difficult to forecast. This

leads to low forecast accuracy of the indirect forecast of the aggregate. Hubrich (2005) inves-

tigates whether forecast combination of different methods improves forecast accuracy of the

components and hence the indirect forecast of the aggregate and finds that this is not the case.

However, directly forecasting the aggregate using VARagg,sub
(1) is very similar in terms of forecast

accuracy to using the same model, i.e. including all disaggregate variables and the aggregate,

for the indirect forecast. Including the aggregate in the component models seems to improve

forecast accuracy of the aggregate.13 We find that the indirect forecast based on a VAR includ-

ing subcomponents with no lags as chosen by the SIC exhibits higher forecast accuracy than all

other indirect forecast methods. This model represents a random walk with drift for prices for

each of the components and for the aggregate and is selected by theSIC for theV ARsub, the

V ARagg,sub and theV ARint. However, the direct forecast using a simple AR model does lead

to the highest forecast accuracy 12 months ahead overall.

For a 12 months ahead horizon the VARagg,sub
(1) outperforms the VARagg,sub

Gets in contrast to the

one-month ahead result. Furthermore, note that the ARSIC performs better than the ARAIC for

one and twelve months ahead forecasts.14

Although perfect collinearity between aggregate and components does not pose a problem

due to annually changing weights in price indices, we present additional results where different

subsets of price components are selected. Comparing forecast accuracy of the VARagg,i,s,pf , the

VARagg,e,uf,pf and the VARagg,e,uf we find that selection from disaggregate variables seems to

improve the forecast accuracy. When we exclude processed food inflation from the VARagg,e,uf,pf ,

the lower dimensional VARagg,e,uf does perform worse than the VARagg,e,uf,pf , in particular for

h = 12. Therefore, the decline in collinearity of the excluded variable and the variables in the

system does matter for the forecast accuracy of the method.

Figure 5 shows the relevance of the differences in the forecasts for h=12 discussed above

from a monetary policy viewpoint, i.e., a difference between 0.2 up to almost 2 percentage

points for some methods in some periods of the forecast period is clearly relevant in this context.

Tests to compare the significance of the difference in forecast accuracy are not carried out

13This result is based on the lag length of 2 suggested by the F-test.
14See e.g.Inoue & Kilian (2005) for a comparison of the SIC and the AIC with respect to forecast model selec-

tion.
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due to their poor size (and power) properties in small forecast samples as considered here (for

simulation evidence see e.g. Harvey, Leybourne & Newbold (1997) and Clark (1999)).

Change in component weights and correlation structure In Section 4 we have analysed

theoretically the effects of different types of changes influencing forecast accuracy of the ag-

gregate model including disaggregate components. We now analyse two of those changes in

the context of forecasting euro area inflation: a change in component weights and a change in

collinearity of disaggregate regressors.

There is some change in (consumer spending) weights of euro area price components:

Weights decline between -3.9 % and -1.3 % annually on average over the previous year over

the forecast evaluation period for unprocessed food, processed food and industrial goods prices,

where in one year for example the decline is almost -9% for unprocessed food. For energy

prices weights decline by -6.5% in 1999 and then increase by 3.4% and 5.6 %, respectively.

Service price weights increase by 3% on average per year over the forecast evaluation period.

These changes in weights mean that the relevance of the changes of, say, unprocessed food

prices for the aggregate declines over the forecast evaluation period so that positive shocks to

unprocessed food prices does affect the aggregate less, whereas the positive shocks to energy

prices will affect the aggregate more in the future.15

Second, we analyse the change in the correlation structure between the aggregate and the

components over the forecast evaluation period. Table 2 presents the correlation matrix, where

the upper triangle represents the correlation for the first estimation sample until 1998(1) and the

lower triangle represents the correlation for the last forecast sample up to 2001(12). Most of the

time correlations between aggregate and components, particularly large declines are observed

between∆pagg and∆ps. Overall, correlations between the aggregate and the components de-

cline. Including the respective component(s) in the forecast model might then lower forecast

accuracy by increasing estimation uncertainty. This might help explaining that selection pays

according to the results in Table 1 where the VARagg,sub
Gets outperforms all other models one month

ahead. Furthermore, correlation among disaggregate components included in the models de-

cline, i.e. collinearity is lower between the regressors. This will affect forecast accuracy. A

particularly large decline in correlation can be found in∆puf and∆ppf as well as∆pi and∆ps.

In some cases even the sign switches:∆puf and∆ppf , ∆puf and∆pi as well as∆pe and∆ps,

15The indirect forecast of the aggregate by aggregating the component forecasts is also affected since the weights

are used for aggregation.
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with low negative correlation between those components for the longest sample. This increases

the costs of omission of the respective components, as is apparent in the lower forecast accuracy

of the more parsimonious model VARagg,e,uf
(1) in comparison with VARagg,e,uf,pf

(1) .

The above effects favour an aggregate model, in particular for longer forecast horizons like

a year, in the sense that an aggregate only including lags of the aggregate might be a more

robust forecasting device when the effect of changing weights and collinearity on the trade-off

between the costs of estimation and those of omission in forecast model selection is unknown a

priori.

5.3.3 Disaggregate information in dynamic factor models

We also employ factor models averaging away idiosyncratic variation in the disaggregate series,

then including the factors in the aggregate model. Little is known so far how the size and the

composition of the data affect the factor estimates. Some results indicating that more data are

not always better for factor analysis can be found in Boivin & Ng (2005). In this paper we

are concerned with how factors from disaggregate information affect forecast accuracy of the

aggregate economic variable. As discussed in 5.2 we estimate the factors by maximum likeli-

hood. The following sections present the forecast accuracy comparison for euro area and US

inflation in terms of RMSFE ratio over theARSIC of different factor models based on disag-

gregate prices for the euro area as well as regression models with one disaggregate component

as a predictor, respectively. Please note that these results are not directly comparable across all

horizons with the previous table since here direct multi-step ahead forecasts are carried out and

forecast accuracy is evaluated for annualised inflation (instead of year on year inflation as in the

previous tables).16 We compute the direct h-step DFM forecasts as

πh
t+h|t = α̂ +

p∑
i=1

φ̂iπt−i +

q∑
j=1

θ̂jF̂t−j+1

whereπh
t+h|t denotes the rate of inflation over the periodt to t + h, F̂t are the estimated factors,

and the direct forecasts based on a single predictorZt as

πh
t+h|t = α̂ +

p∑
i=1

φ̂iπt−i +
l∑

k=1

θ̂kZt−k+1

We also consider forecast combination of all single predictor models based on the respective

disaggregate component with equal weights.

16See e.g. Stock & Watson (1999).
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Euro area inflation Table 3 presents the forecast accuracy comparison in terms of RMSFE ra-

tio over theARSIC for euro area inflation. A result to note for the 1 month ahead forecast is that

the difference between the RMSFE based on the AR(SIC) model presented in Table 3 (RMSFE

0.183) and the results in Table 1 (RMSFE 0.137) is due to the annualised representation of the

underlying model. The forecast model based on annualised inflation seems to perform worse

than the month on month forecast evaluated on the basis of the year-on-year transformation of

the forecast. A further result of interest is that the direct multi-step ahead forecast of aggregate

euro area inflation 12 months ahead (see Table 3), where it is comparable in terms of the un-

derlying transformation with the iterative procedure, is somewhat worse than the iterative 12

months ahead forecast based on the AR(SIC) model (see Table 1). This result suggests that in

the context of forecasting euro area inflation the loss of efficiency by not using all information

available in direct multi-step ahead forecasts is dominating the potentially higher bias due to

mis-specification in the iterative procedure.17

Only some models improve over theARSIC at 1 to 12 months horizons and only the re-

gression model with unprocessed food,puf , as a predictor outperforms theARSIC over all

horizons. A simple average combination of the five model forecasts based on one disaggregate

component, respectively, does not improve over the AR model.

Table 4 presents the forecast accuracy of the different models relative to the AR model

for an extended sample period up to 2004(12). For the extended sample period disaggregate

information is even less useful. Hardly any of the models outperform the AR model on that

sample. The respective graphs of realisation and forecasts forh = 12 are depicted in Figures 6

and 7. They show that the different models do perform similarly in forecasting aggregate euro

area inflation. They all miss the upturn in inflation in 1999 and do better from 2001 onwards.

To summarise the results for the euro area, we find that disaggregate information might help

in forecasting euro area aggregate year-on-year inflation, in particular one month ahead using

VARs or for all horizons using a regression model with unprocessed food as a predictor.

US inflation The results for US year-on-year inflation are presented in Tables 5 and 6. The

results for the same short sample period as for the euro area, i.e. starting in 1990(1) and eval-

uating the forecast accuracy over the years 1998 to 2004, do confirm the euro area findings

that disaggregate information might help in forecasting the aggregate in some situations. For

17The issue of multi-step horizon forecasts is investigated in more detail in e.g. Chevillon & Hendry (2004) and

Marcellino, Stock & Watson (2005).
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this sample, disaggregate information does help forecasting aggregate US inflation one month

ahead, but not for higher horizons. However, if we extend the estimation sample backwards

starting in 1980(1), we find that disaggregate information does also help for 12 months ahead

forecasts. Notably, for this longer horizon all factor models and single predictor models do

improve over the AR model. The longer estimation sample including the eighties does con-

tain more information on the disaggregates that is useful for forecasting aggregate inflation.

Comparing the forecasts in Figures 9 and 10 shows that the forecasts of all models based on

the longer estimation sample starting in 1980 do capture the increase in US inflation in 1999

better than the same models estimated on the shorter sample. These results suggest that the

longer estimation sample contains information on disaggregate components that is relevant for

forecasting the aggregate and therefore improve forecast accuracy.

To investigate this issue, we examine the correlation of the components with the aggregate

and how much of the variability in the data is explained by the estimated factors.

The correlations of the CPI components with the aggregate in terms of year-on-year changes

are higher for the US for the longer sample from 1980 onwards, in particular for industrial goods

CPI, indicating in-sample perdictive content of the disaggregates for the aggregate.

For the sample 1980 to 2004 the first factor of the year-on-year changes in CPI components

explains 75% of the variability in the data, the second factor explains 15% and third factor 6%.

For the sample starting in 1990 the first three factors explain 57, 26, 13 % of the variation in

the data, respectively, and therefore much less than in the longer sample. For the euro area

sample 1992-2004 the first, second and third factor explain 52, 24 and 16 % of the variability

in the data, similar to the US for the comparable sample. Less of the variation in the data can

be explained by disaggregate based factors for the shorter sample.

To analyse the robustness of our forecast results, we extend the sample backward as far as

data are available, i.e. starting the sample in 1967(1). The result that disaggregate information

improves the forecast of the aggregate does not change qualitatively. The results do not change

substantially either when extending the forecast evaluation period from 6 to 10 years.

Comparing the forecast accuracy in RMSFE terms of the AR model for aggregate annualised

inflation for different horizons, we find that the AR forecast accuracy is similar for different

length of the estimation samples for one month horizons, but is more accurate based on the

shorter estimation sample when forecasting 12 months ahead. Comparing the absolute RMSFE

of the AR model, factor models and regression models for forecasting 12 months ahead, we

find that disaggregate information in factor models and regression models improves forecast
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accuracy for the longer sample in comparison with the aggregate model only including lags

of the aggregate. However, all models provide more accurate predictions based on the shorter

sample. A characteristic to note of the shorter sample is that the variance of the aggregate is

considerably lower than for the longer sample. Therefore, there is less variability to be explained

by disaggregates.

6 Conclusions

In this paper, we show theoretically that a forecasting model including both aggregate and

disaggregate variables in the predictor set should lower the prediction mean squared error in

population relative to a model that includes only lags of the aggregate or to first forecasting the

disaggregates and then aggregating those forecasts. However, we find that it does not always

do so when forecasting euro area and US inflation and analyse reasons for this discrepancy

between theoretical predictions and the empirical results.

There are many steps between predictability in population and ’forecastability’. Predictabil-

ity need not translate into forecastability in finite samples when the forecast model differs from

the data generation process. The predictability concept that we consider in this paper refers to

a property of the variable of interest in relation to the information set considered. In contrast,

forecastability refers to the improvement in forecast accuracy given the unconditional moments

of a variable. The predictive value of disaggregate information can be off-set by estimation un-

certainty, model selection uncertainty, changing collinearity, structural breaks and measurement

errors.

In the context of forecasting euro area inflation, we find that changing weights in the price

index and changing collinearity between disaggregate prices undermine the performance of dis-

aggregate-based models. The following conclusions can be drawn from our empirical analysis:

Overall, we find that there is little cost or benefit from model selection in VAR models including

disaggregate components at short horizons, although the model chosen byPcGetsis best at a

forecast horizon ofh = 1. More stringent selection pays ash grows when comparing AR

models based on theSIC versusAIC. Indirect forecasts, i.e., forecasting the disaggregates and

aggregating those forecasts, usually perform worst, although the selection procedure does play

a role. Furthermore, including aggregates as robust predictors in the disaggregate models might

pay, again depending on the lag order selection procedure applied. Dynamic factor forecasts,

where the factors are derived based on disaggregate price variables only, improve over the AR
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model only in some cases when forecasting euro area inflation.

All methods perform quite similar at forecast horizons of one month. At the forecast horizon

of one year, differences between the forecasts from the different methods are larger and are

relevant from a monetary policy perspective.

The theoretical prediction that disaggregate information should increase forecast accuracy,

is not strongly supported for forecasting euro area inflation, where only a short sample can

be considered due to data availability. We find that including disaggregate variables in the

aggregate model does rarely improve forecasts of the euro area aggregate, in particular at longer

forecast horizons. The forecasting model based on lags of the aggregate seems to be a more

robust forecasting device in this context.

However, the theoretical result on predictability that disaggregate information does help is

supported for forecasting US inflation, in particular for a longer sample period from 1980 to

2004. We find that for the US CPI inflation and its components, disaggregates clearly help fore-

casting the aggregate at short horizons for a sample excluding the 1980s. Based on a longer,

more informative estimation sample including the 1980s disaggregates help forecasting the ag-

gregate at all horizons.

We find that the differences between the theoretical results on predictability and the empir-

ical results for different forecasting methods, countries and sample periods can be attributed

to changes in collinearity between disaggregate price components that affect the bias-variance

trade-off in forecast model selection, to changes in the extent that the variance of disaggregate

price components can be explained by factors, as well as changes in the unconditional moments

of the aggregate. Estimation samples with sufficient variability in the aggregate and the com-

ponents are necessary for disaggregate variables to improve forecast accuracy of the aggregate.

Our results suggest that model selection does play an important role in whether disaggregate

information helps in forecasting. More research is necessary on how to select a good forecast-

ing model, in particular in the presence of changing collinearity that affects the bias-variance

trade-off in model selection.

We conclude that disaggregate information might help for forecasting the aggregate in line

with our theoretical results on predictability in population, but the scope of such an improvement

has to be assessed depending on the particular forecasting situation.
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Figure 1:First differences of euro area HICP (sub-)indices (in logarithm)
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Figure 2:Euro area year-on-year HICP inflation (in %), aggregate and subindices
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Figure 4:Euro area year-on-year inflation rate and forecasts in %, upper panels: 1 month ahead, lower

panels: 6 months ahead, solid line: actual, Fdir: direct forecast of aggregate, Find: indirect forecast of

aggregate
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Figure 5:Euro area year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual,

Fdir: direct forecast of aggregate, Find: indirect forecast of aggregate
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Figure 6:Euro area year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual,

slashed lines: Factor model and AR model forecast of the aggregate, sample 1990(1) - 2001(12)
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Figure 7:Euro area year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual,

slashed lines: Factor model and AR model forecast of the aggregate, sample 1990(1) - 2004(12)
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Figure 8:US year-on-year inflation rate and forecasts in %, 1 month ahead, solid line: actual, slashed

lines: forecasts of the aggregate from factor and AR model and aggregate model including services

prices, sample 1980(1)-2004(12)
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Figure 9:US year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual, slashed

lines: forecasts of the aggregate from factor and AR model and aggregate model including energy prices,

sample: 1990(1)-2004(12)
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Figure 10:US year-on-year inflation rate and forecasts in %, 12 months ahead, solid line: actual, slashed

lines: forecasts of the aggregate from factor and AR model and aggregate model including energy prices,

sample 1980(1)-2004(12)
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Table 1:RMSFE of euro area year-on-year inflation in percentage points, Recursive esti-

mation samples 1992(1) to 1998(1),...,2000(12)

horizon 1 6 12

method direct indirect direct indirect direct indirect

∆12p̂
agg ∆12p̂

agg
sub ∆12p̂

agg ∆12p̂
agg
sub ∆12p̂

agg ∆12p̂
agg
sub

ARSIC 0.137 0.139 0.431 0.478 0.740 0.880

ARAIC 0.139 0.141 0.404 0.478 0.921 0.904

VARsub
(2) 0.151 0.670 1.402

VARagg,sub
(0) 0.138 0.138 0.448 0.448 0.766 0.771

VARagg,sub
(1) 0.143 0.144 0.451 0.449 0.800 0.803

VARagg,sub
Gets 0.134 0.134 0.465 0.459 0.832 0.821

VARagg,i,s,pf
(1) 0.141 0.444 0.771

VARagg,e,uf,pf
(1) 0.138 0.435 0.756

VARagg,e,uf
(1) 0.138 0.439 0.762

Note: super and subscripts indicate model selection procedure, SIC: Schwarz criterion,

AIC: Akaike criterion, VARsub: VAR only including subcomponents, lag order,p = 2,

VARagg,sub: VAR with aggregate and subcomponentsp = 0 (SIC), p = 1 (AIC),

VARagg,sub
Gets : VAR with aggregate and subcomponents selected by PcGets, liberal strategy

Hendry & Krolzig (2001)

Table 2:Correlation matrix of first differences of euro area log aggregate and subcompo-

nent prices: upper triangle sample until 1998(1), lower triangle sample until 2001(12)

∆pagg ∆puf ∆ppf ∆pi ∆ps ∆pe

∆pagg 1 0.27931 0.43579 0.63135 0.70929 0.60797

∆puf 0.3229 1 -0.22429 -0.1362 -0.13113 0.036102

∆ppf 0.34893 0.028023 1 0.41859 0.52704 0.0048911

∆pi 0.53733 0.044988 0.28777 1 0.61273 0.085604

∆ps 0.49376 -0.06515 0.51041 0.45057 1 0.10458

∆pe 0.7071 0.0076403 -0.078966 0.039373 -0.06116 1
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Table 3: Euro area, RMSFE ratios of direct forecast of annualised inflation; Factor and

single predictor models based on disaggregate prices; Sample up to 2001(12)

horizon 1 6 12

RMSFE ARSIC 0.183 0.404 0.779

RMSFE ratios over ARSIC

FM(f1) 1.028 1.113 1.093

FM(f2) 0.986 1.062 1.039

FM(f3) 1.056 1.038 1.045

FM(f4) 1.061 1.083 1.094

DFM(f1)SIC 1.044 1.196 1.117

DFM(f2)SIC 0.993 1.163 0.998

DFM(f3)SIC 1.067 1.119 0.927

DFM(f4)SIC 1.132 1.256 1.156

puf 0.995 0.960 0.955

ppf 0.988 1.056 1.060

pi 1.052 1.052 1.053

ps 1.042 1.062 1.052

pe 1.016 1.023 1.014

pcomb 1.010 1.016 1.018

Note: RMSFE (not annualised) for AR(SIC) model in percentage points, Recursive estima-

tion samples 1992(1) to 1998(1),...,2000(12), Super and subscripts indicate model selection

procedure, SIC: Schwarz criterion, pre-test: 5% sign. level, based on Newey-West adjusted

heteroscedastic-serial consistent least-squares regression, FM(f): factor models with 1,2,3,4

factors, DFM(f)SIC : dynamic factor models with 1,2,3,4 factors with factor lag lengths cho-

sen by SIC,puf , ppf , pi, ps, pe: models with respective subcomponent as predictor,pcomb:

simple average of the forecasts with the five disaggregate component models

39



Table 4: Euro area, RMSFE ratios of direct forecast of annualised inflation; Factor and

single predictor models based on euro area disaggregate prices; Sample up to 2004(12)

horizon 1 6 12

RMSFE ARSIC 0.149 0.328 0.562

RMSFE ratios over ARSIC

FM(f1) 1.055 1.077 1.067

FM(f2) 1.010 1.073 1.054

FM(f3) 1.129 1.107 1.111

FM(f4) 1.066 1.106 1.133

DFM(f1)SIC 1.055 1.167 1.120

DFM(f2)SIC 1.141 1.230 1.157

DFM(f3)SIC 1.306 1.338 1.297

DFM(f4)SIC 1.115 1.237 1.336

puf 1.006 0.964 0.997

ppf 1.019 1.038 1.047

pi 1.030 1.040 1.045

ps 1.057 1.057 1.046

pe 1.031 1.058 1.031

pcomb 1.013 1.016 1.021

Note: RMSFE (not annualised) for AR(SIC) model in percentage points , Recursive estima-

tion samples 1992(1) to 1998(1),...,2003(12), Super and subscripts indicate model selection

procedure, SIC: Schwarz criterion, pre-test: 5% sign. level, based on Newey-West adjusted

heteroscedastic-serial consistent least-squares regression, FM(f): factor models with 1,2,3,4

factors, DFM(f)SIC : dynamic factor models with 1,2,3,4 factors with factor lag lengths cho-

sen by SIC,puf , ppf , pi, ps, pe: models with respective subcomponent as predictor,pcomb:

simple average of the forecasts with the five disaggregate component models
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Table 5: US, RMSFE ratios of direct forecast of annualised inflation; Factor and single

predictor models based on disaggregate prices; Sample 1990(1) to 2004(12)

horizon 1 6 12

RMSFE ARSIC 0.229 0.541 0.781

RMSFE ratios over ARSIC

FM(f1) 1.014 1.024 1.011

FM(f2) 1.000 1.054 1.049

FM(f3) 0.987 1.021 1.095

DFM(f1)SIC 1.031 1.038 1.014

DFM(f2)SIC 1.020 1.114 1.159

DFM(f3)SIC 1.025 1.008 1.076

pf 0.997 0.999 1.022

pi 0.983 1.021 1.035

ps 1.014 1.006 1.047

pe 0.972 0.982 1.019

pcomb 0.969 0.989 1.015

Note: RMSFE (not annualised) for AR(SIC) model in percentage points, Recursive estima-

tion samples 1990(1) to 1997(1),...,2003(12), Super and subscripts indicate model selection

procedure, SIC: Schwarz criterion, pre-test: 5% sign. level, based on Newey-West adjusted

heteroscedastic-serial consistent least-squares regression, FM(f): factor models with 1,2,3,4

factors, DFM(f)SIC : dynamic factor models with 1,2,3,4 factors with factor lag lengths cho-

sen by SIC,pcomb is a simple average of the forecasts with the four disaggregate component

models
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Table 6: US, RMSFE ratios of direct forecast of annualised inflation; Factor and single

predictor models based on disaggregate prices; Sample 1980(1) to 2004(12)

horizon 1 6 12

RMSFE ARSIC 0.230 0.623 0.978

RMSFE ratios over ARSIC

FM(f1) 1.010 0.923 0.888

FM(f2) 1.057 0.921 0.885

FM(f3) 1.042 0.940 0.926

DFM(f1)SIC 0.928 0.879 0.802

DFM(f2)SIC 1.038 0.880 0.765

DFM(f3)SIC 0.965 0.926 0.891

pf 1.002 0.982 0.944

pi 1.006 0.978 0.985

ps 0.989 0.937 0.921

pe 1.011 0.930 0.886

pcomb 1.000 0.938 0.897

Note: RMSFE (not annualised) for AR(SIC) model in percentage points , Recursive estima-

tion samples 1980(1) to 1997(1),...,2003(12), Super and subscripts indicate model selection

procedure, SIC: Schwarz criterion, pre-test: 5% sign. level, based on Newey-West adjusted

heteroscedastic-serial consistent least-squares regression, FM(f): factor models with 1,2,3,4

factors, DFM(f)SIC : dynamic factor models with 1,2,3,4 factors with factor lag lengths cho-

sen by SIC,pcomb is a simple average of the forecasts with the four disaggregate component

models
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