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in the tradition of Christiano, Eichenbaum, and Evans (2005) and Smets and 
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account for the switch to an inflation targeting regime in 1993 we allow for a 
discrete break in the central bank's instrument rule. A key equation in the 
model – the uncovered interest rate parity (UIP) condition – is well known to 
be rejected empirically. Therefore we explore the consequences of modifying 
the UIP condition to allow for a negative correlation between the risk premium 
and the expected change in the nominal exchange rate. The results show that 
the modification increases the persistence and volatility in the real exchange 
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1. Introduction

During the last years there has been a growing interest from academia and especially central
banks in using dynamic stochastic general equilibrium (DSGE) models for analyzing macroeco-
nomic fluctuations and to use these models for quantitative policy analysis. Smets and Wouters
(2003, 2004) have in a series of influential papers shown that the forecasting performance of the
new generation of (closed economy) DSGE models in the tradition of Christiano, Eichenbaum
and Evans (2005) compare very well with both standard and Bayesian vector autoregressive
(VAR) models. Adolfson et al. (2005a) report similar results for an open economy DSGE
model. However, even if these models appear to be able to capture the development of some key
macroeconomic time series, there are still challenges to make them fulfill the observed properties
in the data. Often the cross-equation restrictions implied by the DSGE model are simply too
strict when taken to the data. One example is the inability of open economy models to account
for the persistence and volatility in the real exchange rate, another is the failure of accounting for
the international transmission of business cycles (see, e.g., Chari, Kehoe and McGrattan (2002);
Lubik and Schorfheide, 2005; Justiniano and Preston (2005); de Walque, Smets and Wouters,
2005).

A key equation in open economy DSGE models is the uncovered interest rate parity (UIP)
condition, which in its simplest formulation suggests that the difference between domestic and
foreign nominal interest rates equals the expected future change in the nominal exchange rate.
The UIP condition is a key equation in open economy models not only for the exchange rate but
also for many macroeconomic variables, since there is a lot of internal propagation of exchange
rate movements working through fluctuating relative prices. There is, however, strong empirical
evidence against the standard UIP condition. VAR evidence suggest that the impulse response
function for the real exchange rate after a shock to monetary policy is hump-shaped with a
peak effect after about 1 year (see, e.g., Eichenbaum and Evans, 1995; Faust and Rogers, 2003),
whereas the standard UIP condition imply a peak effect within the quarter followed by a rela-
tively quick mean reversion. Moreover, a DSGE model with a standard UIP condition cannot
account for the so-called “forward premium puzzle” recorded in the data, i.e. that a currency
whose interest rate is high tends to appreciate which implies that the risk premium must be
negatively correlated with the expected exchange rate depreciation (see, e.g., Fama, 1984; Froot
and Frankel, 1989).

In an attempt to account for these empirical shortcomings, we alter the structural open
economy DSGE model developed in Adolfson et al. (2005b) and modify the uncovered interest
rate parity (UIP) condition to allow for a negative correlation between the risk premium and
the expected change in the exchange rate, following the vast empirical evidence reported in for
example Engel (1996). In the log-linearized version of the model, our suggested modification of
the risk premium introduces a lagged dependence between the exchange rate and the domestic
interest rate (which is absent using a standard UIP condition), and this may help the model to
account for the hump-shaped impulse response functions to a policy shock found in VARs. To
explore the quantitative role of the UIP condition in the model we make a thorough analysis of
the empirical performance of the model with the standard and modified UIP condition for a set
of key aggregate quantities and prices along a number of dimensions.

The model used in the analysis is a small open economy version of the closed economy DSGE
model of Christiano, Eichenbaum and Evans (2005) with both nominal and real frictions. As
in Altig et al. (2003), we introduce a stochastic unit root technology shock, which enables us
to work with trending data. The model is estimated with Bayesian techniques on Swedish data
from 1980 to 2004, following Schorfheide (2000), Otrok (2001) and Smets and Wouters (2003).
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Sweden went from a fixed to a floating exchange rate and adopted an inflation targeting
regime in the mid 90’s. We therefore believe that there are good reasons to allow for a change
in the conduct of monetary policy before and after this event when estimating the model. The
Riksbank abandoned the fixed exchange rate regime in November 1992 after the turmoil in
the foreign exchange markets, and adopted a 2 percent inflation target in January 1993. The
direction of monetary policy did consequently change in the first half of the 1990s and to formally
take this into account in the model we allow the central bank to behave differently before and
after the regime shift.1

By comparing impulse response functions and Bayesian posterior model probabilities we
show that our specification allowing for a modified UIP condition better matches the observed
properties of Swedish data relative to the model using a standard UIP condition. In addition,
we examine the forecasting accuracy of the two DSGE specifications using a traditional out-of-
sample rolling forecast evaluation for the period 1999Q1 to 2004Q4. We contrast the forecasts
from the alternative DSGE models to forecasts from both standard and Bayesian VAR models
as well as traditional benchmark models such as the random walk, to get a better sense of
the (relative) precision in the DSGE. Again we conclude that our DSGE specification with
a regime shift and the modified UIP condition compares relatively well to more traditional
forecasting tools. Lastly, we also use the approach in Del Negro and Schorfheide (2004) and Del
Negro, Schorfheide, Smets and Wouters (2006) to learn more about the misspecification in each
particular DSGE model, by exploiting the DSGE as a prior for a VAR model. If a particular
DSGE prior is overruled by the data when estimating the VAR this questions the theoretical
restrictions included in the DSGE model and indicates misspecification. Our results indicate
that our open economy DSGE model’s theoretical restrictions are in fact useful for structuring
reduced form VARs. However, even our relatively large model appears to be misspecified in the
sense that a prior which is more loosely centered around the DSGE model is preferred in terms
of the marginal likelihood. This is in line with the findings of Del Negro, Schorfheide, Smets
and Wouters (2006).

The remainder of the paper is organized as follows. In Section 2, we briefly describe the
theoretical open economy DSGE model. In Section 3 we discuss the data and the prior distri-
butions used in the estimation. We also describe how to form a prior on the VAR from the
DSGE model, and discuss how the (optimal) sharpness in this prior can help us characterize the
degree of misspecification in our structural model. Section 4 contains the empirical results. We
present the parameter estimates in the different DSGE specifications and compare the Bayesian
posterior model probabilities. In addition, we report the forecasting accuracy of the two DSGE
models and relate this to the forecasts from a Bayesian and a standard VAR. Subsequently
we present the empirical results from the hybrid DSGE-VAR models, evaluating the degree of
misspecification. Lastly, Section 6 provides some conclusions.

1The behavior of monetary policy in the inflation targeting period (1993Q1−) is approximated with a Taylor-
type instrument rule. For the “fixed exchange rate” period (1980Q1−1992Q4) , we conduct and present estimation
results for a number of different specifications, ranging from a purely fixed exchange rate rule to a rule of the
same form as for the inflation targeting period (but allow for different parameter values). To support the notion
of a break in the monetary policy behaviour, we also provide results under the assumption that no break has
occurred. The reason to perform estimations with different versions of the policy rule is that it is hard a priori to
have a clear cut view on private sector perceptions about the conduct of monetary policy during this period. We
elaborate more on this when presenting the alternative policy formulations in Section 2.1.
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2. The DSGE model

2.1. Model overview

This section gives an overview of the model economy and presents the key equations in the
theoretical model.

The model is an open economy DSGE model very similar to the one developed in Adolfson
et al. (2005b) and shares its basic closed economy features with many recent new Keynesian
models, including the benchmark models of Christiano, Eichenbaum and Evans (2005), Altig,
Christiano, Eichenbaum and Lindé (2003), and Smets and Wouters (2003).

The model economy consist of households, domestic goods firms, importing consumption
and investment firms, exporting firms, a government, a central bank, and an exogenous foreign
economy. The households consume a basket consisting of domestically produced goods and
imported goods, which are supplied by domestic and importing firms, respectively. We allow
the imported goods to enter both aggregate consumption as well as aggregate investment. This
is needed when matching the joint dynamics in both imports and consumption since imports
(and investment) are much more volatile than consumption.

Households can invest in their stock of capital, save in domestic bonds and/or foreign bonds
and hold cash. The choice between domestic and foreign bonds balances into an arbitrage
condition pinning down expected exchange rate changes (i.e., an uncovered interest rate parity
condition). Compared to a standard setting the risk premium is allowed to be negatively cor-
related with the expected change in the exchange rate, following the evidence discussed in for
example Duarte and Stockman (2005). As in the closed economy model households rent capital
to the domestic firms and decide how much to invest in the capital stock given costs of adjusting
the investment rate. Wage stickiness is introduced through an indexation variant of the Calvo
(1983) model.

Domestic production is exposed to stochastic unit root technology growth as in Altig et
al. (2003). The firms (domestic, importing and exporting) all produce differentiated goods
and set prices according to an indexation variant of the Calvo model. By including nominal
rigidities in the importing and exporting sectors we allow for short-run incomplete exchange
rate pass-through to both import and export prices.

Monetary policy is approximated with both a fixed exchange rate rule and a Taylor-type
interest rate rule in which we allow for different monetary policy conduct before and after the
adoption of an inflation targeting regime.

The model adopts a small open economy perspective where we assume that the foreign
economy is exogenous. The foreign inflation, output and interest rate are therefore given by an
exogenous VAR. In what follows we provide the optimization problems of the different firms and
the households, and describe the behavior of the central bank.

2.2. Model

The model economy includes four different categories of operating firms. These are domestic
goods firms, importing consumption, importing investment, and exporting firms, respectively.
Within each category there is a continuum of firms that each produces a differentiated good.
The domestic goods firms produce their goods using capital and labor inputs, and sell them to a
retailer which transforms the intermediate products into a homogenous final good that in turn
is sold to the households.

The final domestic good is a composite of a continuum of i differentiated goods, each supplied

4



by a different firm, which follows the constant elasticity of substitution (CES) function

Yt =

⎡⎣ 1Z
0

(Yi,t)
1

λdt di

⎤⎦λ
d
t

, 1 ≤ λdt <∞, (1)

where λdt is a stochastic process that determines the time-varying flexible-price markup in the
domestic goods market. The demand for firm i’s differentiated product, Yi,t, follows

Yi,t =

Ã
P d
i,t

P d
t

!− λdt
λdt−1

Yt. (2)

The production function for intermediate good i is given by

Yi,t = z1−αt �tK
α
i,tH

1−α
i,t − ztφ, (3)

where zt is a unit-root technology shock common to the domestic and foreign economies, �t
is a domestic covariance stationary technology shock, Ki,t the capital stock and Hi,t denotes
homogeneous labor hired by the ith firm. A fixed cost ztφ is included in the production function.
We set this parameter so that profits are zero in steady state, following Christiano et al. (2005).

We allow for working capital by assuming that a fraction ν of the intermediate firms’ wage
bill has to be financed in advance through loans from a financial intermediary. Cost minimization
yields the following nominal marginal cost for intermediate firm i:

MCd
t =

1

(1− α)1−α
1

αα
(Rk

t )
α [Wt(1 + ν(Rt−1 − 1))]1−α

1

(zt)1−α
1

�t
, (4)

where Rk
t is the gross nominal rental rate per unit of capital, Rt−1 the gross nominal (economy

wide) interest rate, and Wt the nominal wage rate per unit of aggregate, homogeneous, labor
Hi,t.

Each of the domestic goods firms is subject to price stickiness through an indexation variant
of the Calvo (1983) model. Since we have a time-varying inflation target in the model we allow
for partial indexation to the current inflation target, but also to last period’s inflation rate in
order to allow for a lagged pricing term in the Phillips curve. Each intermediate firm faces
in any period a probability (1 − ξd) that it can reoptimize its price. The reoptimized price is
denoted P d,new

t .2 The different firms maximize profits taking into account that there might not
be a chance to optimally change the price in the future. Firm i therefore faces the following
optimization problem when setting its price

max
Pd,new
t

Et
∞P
s=0

(βξd)
s υt+s[(

¡
πdtπ

d
t+1...π

d
t+s−1

¢κd ¡π̄ct+1π̄ct+2...π̄ct+s¢1−κd P d,new
t )Yi,t+s

−MCd
i,t+s(Yi,t+s + zt+sφ

j)],

(5)

where the firm is using the stochastic household discount factor (βξd)
s υt+s to make profits

conditional upon utility. β is the discount factor, and υt+s the marginal utility of the households’
nominal income in period t+s, which is exogenous to the intermediate firms. πdt denotes inflation

2For the firms that are not allowed to reoptimize their price, we adopt the indexation scheme P d
t+1 =

πdt
κd (π̄ct+1)

1−κd P d
t where κd is an indexation parameter.
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in the domestic sector, π̄ct a time-varying inflation target of the central bank and MCd
i,t the

nominal marginal cost.
The first order condition of the profit maximization problem in equation (5) yields the

following log-linearized Phillips curve:³bπdt − b̄πct´ =
β

1 + κdβ

³
Etbπdt+1 − ρπ b̄πct´+ κd

1 + κdβ

³bπdt−1 − b̄πct´ (6)

−κdβ (1− ρπ)

1 + κdβ
b̄πct + (1− ξd)(1− βξd)

ξd (1 + κdβ)

³cmcdt +
bλdt´ ,

where a hat denotes log-deviation from steady state (i.e., X̂t = lnXt − lnX).
We now turn to the import and export sectors. There is a continuum of importing consump-

tion and investment firms that each buys a homogenous good at price P ∗t in the world market,
and converts it into a differentiated good through a brand naming technology. The exporting
firms buy the (homogenous) domestic final good at price P d

t and turn this into a differentiated
export good through the same type of brand naming. The nominal marginal cost of the im-
porting and exporting firms are thus StP ∗t and P d

t /St, respectively, where St is the nominal
exchange rate (domestic currency per unit of foreign currency). The differentiated import and
export goods are subsequently aggregated by an import consumption, import investment and
export packer, respectively, so that the final import consumption, import investment, and export
good is each a CES composite according to the following:

Cm
t =

⎡⎣ 1Z
0

¡
Cm
i,t

¢ 1
λmc
t di

⎤⎦λ
mc
t

, Imt =

⎡⎣ 1Z
0

¡
Imi,t
¢ 1

λmi
t di

⎤⎦λ
mi
t

, Xt =

⎡⎣ 1Z
0

(Xi,t)
1
λxt di

⎤⎦λ
x
t

,

(7)
where 1 ≤ λjt < ∞ for j = {mc,mi, x} is the time-varying flexible-price markup in the import
consumption (mc), import investment (mi) and export (x) sector. By assumption the continuum
of consumption and investment importers invoice in the domestic currency and exporters in the
foreign currency. In order to allow for short-run incomplete exchange rate pass-through to
import as well as export prices we therefore introduce nominal rigidities in the local currency
price, following for example Smets and Wouters (2002).3 This is modeled through the same
type of Calvo setup as above. The price setting problems of the importing and exporting firms
are completely analogous to that of the domestic firms in equation (5), and the demand for the
differentiated import and export goods follow similar expressions as to equation (2). In total
there are thus four specific Phillips curve relations determining inflation in the domestic, import
consumption, import investment and export sectors.

In the model economy there is also a continuum of households which attain utility from
consumption, leisure and real cash balances. The preferences of household j are given by

Ej0

∞X
t=0

βt

⎡⎢⎣ζct ln (Cj,t − bCj,t−1)− ζhtAL
(hj,t)

1+σL

1 + σL
+Aq

³
Qj,t

ztPd
t

´
1− σq

1−σq⎤⎥⎦ , (8)

where Cj,t, hj,t and Qj,t/P
d
t denote the j

th household’s levels of aggregate consumption, labor
supply and real cash holdings, respectively. Consumption is subject to habit formation through

3There would be complete pass-through in the absence of nominal rigidities, since there are neither distribution
costs in the import and export sectors nor an endogenous pricing to market behavior among the firms in the model.
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bCj,t−1, such that the household’s marginal utility of consumption is increasing in the quantity
of goods consumed last period. ζct and ζht are persistent preference shocks to consumption and
labor supply, respectively. To make cash balances in equation (8) stationary when the economy
is growing they are scaled by the unit root technology shock zt. Households consume a basket
of domestically produced goods and imported products which are supplied by the domestic and
importing consumption firms, respectively. Aggregate consumption is assumed to be given by
the following constant elasticity of substitution (CES) function:

Ct =

∙
(1− ωc)

1/ηc
³
Cd
t

´(ηc−1)/ηc
+ ω

1/ηc
c (Cm

t )
(ηc−1)/ηc

¸ηc/(ηc−1)
, (9)

where Cd
t and Cm

t are consumption of the domestic and imported good, respectively. ωc is the
share of imports in consumption, and ηc is the elasticity of substitution across consumption
goods.

The households invest in a basket of domestic and imported investment goods to form the
capital stock, and decide how much capital to rent to the domestic firms given costs of adjusting
the investment rate. The households can increase their capital stock by investing in additional
physical capital (It), taking one period to come in action. The capital accumulation equation is
given by

Kt+1 = (1− δ)Kt +Υt

³
1− S̃ (It/It−1)

´
It, (10)

where S̃ (It/It−1) determines the investment adjustment costs through the estimated parameter
S̃00, and Υt is a stationary investment-specific technology shock. Total investment is assumed to
be given by a CES aggregate of domestic and imported investment goods (Idt and Imt , respec-
tively) according to

It =

∙
(1− ωi)

1/ηi
³
Idt

´(ηi−1)/ηi
+ ω

1/ηi
i (Imt )

(ηi−1)/ηi
¸ηi/(ηi−1)

, (11)

where ωi is the share of imports in investment, and ηi is the elasticity of substitution across
investment goods.

Further, along the lines of Erceg, Henderson and Levin (2000), each household is a monopoly
supplier of a differentiated labor service which implies that they can set their own wage. After
having set their wage, households supply the firms’ demand for labor at the going wage rate.
Each household sells its labor to a firm which transforms household labor into a homogenous
good that is demanded by each of the domestic goods producing firms. Wage stickiness is
introduced through the Calvo (1983) setup, where household j reoptimizes its nominal wage
rate Wnew

j,t according to the following

max
Wnew
j,t

Et
P∞

s=0 (βξw)
s [−ζht+sAL

(hj,t+s)
1+σL

1+σL
+

υt+s
(1−τyt+s)
(1+τwt+s)

³¡
πct ...π

c
t+s−1

¢κw ¡π̄ct+1...π̄ct+s¢(1−κw) ¡μz,t+1...μz,t+s¢Wnew
j,t

´
hj,t+s],

(12)

where ξw is the probability that a household is not allowed to reoptimize its wage, τ
y
t a labor

income tax, τwt a pay-roll tax (paid for simplicity by the households), and μz,t = zt/zt−1 is the
growth rate of the permanent technology level.4

4For the households that are not allowed to reoptimize, the indexation scheme is Wj,t+1 =
(πct)

κw (π̄ct+1)
(1−κw) μz,t+1W

new
j,t , where κw is an indexation parameter.
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The choice between domestic and foreign bond holdings balances into an arbitrage condition
pinning down expected exchange rate changes (i.e., an uncovered interest rate parity condition).
To ensure a well-defined steady-state in the model, we assume that there is premium on the
foreign bond holdings which depends on the aggregate net foreign asset position of the domestic
households, following, e.g., Lundvik (1992), and Schmitt-Grohé and Uribe (2001). A common
problem with open economy DSGE models is that they typically do not provide enough persis-
tence to generate a hump-shaped response of the real exchange rate after a shock to monetary
policy, which is commonly found in estimated VARs (see, e.g., Eichenbaum and Evans, 1995;
Faust and Rogers, 2003). A novel feature with our specification of the risk premium is the inclu-
sion of the expected change in the exchange rate EtSt+1/St−1. This is based on the observation
that risk premia are strongly negatively correlated with the expected change in the exchange
rate (i.e., the expected depreciation), see e.g. Duarte and Stockman (2005) and Fama (1984).
This pattern is often referred to as the “forward premium puzzle”. The risk premium is given
by:

Φ(at, St, φ̃t) = exp

µ
−φ̃a(at − ā)− φ̃s

µ
EtSt+1
St

St
St−1

− 1
¶
+ φ̃t

¶
, (13)

where at ≡ (StB∗t )/(Ptzt) is the net foreign asset position, and φ̃t is a shock to the risk premium.
Consistent with the empirical evidence the idea here is that the domestic investors will require
a lower expected return on their foreign bond holdings relative to their domestic deposits if the
future exchange rate is easier to predict (that is, if the exchange rate is expected to depreciate
consecutively). However, this formulation is not structural in the sense that such a risk pre-
mium can be associated with the utility function in (8) or any standard utility function for a
representative agent (see Backus, Foresi and Telmer, 2001, for a discussion). The UIP condition
in its log-linearized form is given by:

bRt − bR∗t = ³1− eφs´Et∆bSt+1 − eφs∆bSt − eφabat + beφt, (14)

where ∆ is the first difference operator. By setting φ̃s = 0 we obtain the UIP condition typically
used in small open economy models (see, e.g., Adolfson et al., 2005b). In the empirical analysis
we formally test which specification is supported by the data.

Following Smets and Wouters (2003), monetary policy is approximated with a generalized
Taylor (1993) rule. The central bank is assumed to adjust the short term interest rate in response
to deviations of CPI inflation from the time-varying inflation target, the output gap (measured

as actual minus trend output), the real exchange rate
³
x̂t ≡ Ŝt + P̂ ∗t − P̂ c

t

´
and the interest rate

set in the previous period. The instrument rule (expressed in log-linearized terms) follows:

bRt = ρR,t bRt−1 +
¡
1− ρR,t

¢ £b̄πct + rπ,t
¡
π̂ct−1 − b̄πct¢+ ry,tŷt−1 + rx,tx̂t−1

¤
(15)

+r∆π,t∆π̂
c
t + r∆y,t∆ŷt + εR,t,

where εR,t is an uncorrelated monetary policy shock. The output target used by the central
bank is here defined to be the trend level of output. An alternative specification is to define the
output target in terms of the level output that would have prevailed in the absence of nominal
rigidities. This model consistent output gap would probably come closer to optimal monetary
policy (see Woodford, 2003, for further discussion). However, the marginal likelihoods speak
clearly against such a specification for Sweden. The log marginal likelihoods differ by almost 20
units between these two specifications, indicating that the trend output gap appear to better
capture the actual policy behavior of Sveriges Riksbank than the model consistent output gap
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during this sample period. Del Negro et al. (2006) find a similar result when estimating a closed
economy DSGE model on US data.

Since Sweden went from a “fixed” to a floating exchange rate/inflation targeting regime
in December 1992, we want to allow for a discrete break in the parameters to account for a
policy regime shift. It is not obvious, however, how one should model policy prior to 1993Q1.
Therefore, we study the empirical performance of three variants of the policy rule. In addition,
results are also reported in the case where no break is allowed for, to see if the data support our
prior that the policy rule has changed.5

The first specification is what will be referred to as a fixed exchange rate rule. It has the
following structural form bRt = rs∆Ŝt, (16)

where rs = 1, 000, 000, i.e. the interest rate will respond sharply to nominal exchange rate
movements so as to keep it constant. Note that the reduced form associated with this formulation
implies that the the interest rate will, for instance, respond one to one to foreign interest rate
movements.6

The second specification is what will be referred to as a semi-fixed, or “target zone” rule
following the ideas in Svensson (1994). This rule has essentially the same structure as (15) above
but instead of responding to the real exchange rate, rs∆Ŝt is added to the rule with a high prior
on rs. The prior value of rs is set so that the volatility of the nominal exchange rate in the
model matches the exchange rate volatility in the data during the target-zone period (using the
prior mode for the other parameters in the model).7

The third specification uses exactly the same formulation of the policy as in the inflation
targeting period. Let θR,t collect the parameters of the monetary policy rule. We assume that

θR,t =

½
θR,1, if t < 1993Q1
θR,2, if t ≥ 1993Q1 ,

where θR,1 captures the behavior of the central bank pre inflation targeting and θR,2 captures the
behavior during the inflation targeting regime. There are mainly three reasons why we believe
that a Taylor type rule may provide a good approximation of the conduct of monetary policy
also before the adoption of an inflation target, when Sweden had a fixed exchange rate. First, it
should be recognized that the regime in practice was more of a managed float since the exchange
rate was allowed to fluctuate within certain bands with recurring devaluations of the Krona.8

Second, there are writings published by the Riksbank which suggest that price stability was the
overall objective even prior to the abandoning of the fixed exchange rate (Sveriges Riksbank Press

5From 1977 to 1991, the Krona was pegged to a trade-weighted basket of 15 currencies of Sweden’s most
important trading partners. The exchange rate was managed so as to allow limited fluctuations around the
benchmark rate. However, the Krona was devalued 10% and 16% in 1981 and 1982, respectively. From mid-1991
the peg of the Swedish Krona was changed to a basket based on the European Currency Unit (ECU), with a
fluctuation range of plus or minus 1.5% of a central rate of SEK7.40054=ECU1.00.

6This rule abstracts from the two devaluations in 1981 and 1982 in the sense that the regime shift to the
Taylor-type inflation targeting rule in (15) only captures the adoption of a floating exchange rate in 1993 and the
associated depreciation of the Krona. However, we only use the period 1980Q1− 1985Q4 to form a prior on the
unobserved state and not for inference.

7Curdia and Finocchario (2005) use a similar rule, but assume that the Riksbank responded to exchange rate
deviations from central parity instead.

8 It could also be argued that the inflation and output response in the instrument rule captures the information
required to stabilize the exchange rate. See Monacelli (2004) for a discussion of how a rule of this kind can
describe how monetary policy is formulated in small open economies, and/or economies whose monetary policy
setting is constrained by the participation to a managed/ fixed exchange rate regime.
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release 5/1993). However, third and finally, the Riksbank was not an independent institution
during this period, and the interest rate setting were most likely influenced by policy makers,
with a clear preference for output (employment) stabilization. For these reasons, the private
sector’s perception of the actual policy rule in place - on which they base their decision rules -
could have been very different to that of the simple fixed exchange rate rule given by (16). We
nevertheless let the data determine which one of these policy specifications are most preferred.
When modelling the break in policy conduct, there is a need to take a stance on whether it
was unanticipated or not. To simplify the analysis, we assume (i) that the break is completely
unexpected and that (ii) once it had occurred, the new policy rule is assumed to be fully credible.9

The structural shock processes in the model is given in log-linearized form by the univariate
representation

ς̂t = ρς ς̂t−1 + ες,t, ες,t
iid∼ N

¡
0, σ2ς

¢
(17)

where ςt = { μz,t, �t, λ
j
t , ζ

c
t , ζ

h
t , Υt, φ̃t, εR,t, π̄

c
t , z̃

∗
t } and j = {d,mc,mi, x} .

The government spends resources on consuming part of the domestic good, and collects taxes
from the households. The resulting fiscal surplus/deficit plus the seigniorage are assumed to be
transferred back to the households in a lump sum fashion. Consequently, there is no government
debt. The fiscal policy variables - taxes on labor income, consumption, and the pay-roll, together
with (HP-detrended) government expenditures - are assumed to follow an identified VAR model
with two lags.

To simplify the analysis we adopt the assumption that the foreign prices, output (HP-
detrended) and interest rate are exogenously given by an identified VAR model with four lags.
Both the foreign and the fiscal VAR models are being estimated, using uninformative priors,
ahead of estimating the structural parameters in the DSGE model.10

To clear the final goods market, the foreign bond market, and the loan market for working
capital, the following three constraints must hold in equilibrium:

Cd
t + Idt +Gt + Cx

t + Ixt ≤ z1−αt �tK
α
t H

1−α
t − ztφ, (18)

StB
∗
t+1 = StP

x
t (C

x
t + Ixt )− StP

∗
t (C

m
t + Imt ) +R∗t−1Φ(at−1, eφt−1)StB∗t , (19)

νWtHt = μtMt −Qt, (20)

where Gt is government expenditures, Cx
t and I

x
t are the foreign demand for export goods which

follow CES aggregates with elasticity ηf , and μt = Mt+1/Mt is the monetary injection by the
central bank. When defining the demand for export goods, we introduce a stationary asymmetric
(or foreign) technology shock z̃∗t = z∗t /zt, where z

∗
t is the permanent technology level abroad, to

allow for temporary differences in permanent technological progress domestically and abroad.

9For the first and second formulation of the policy rule, we allow the agents to change their state variables
according to the decision rules pertaining to the inflation targeting regime already from 1992Q3 (i.e. two quarters
prior to the regime shift) in an attempt to improve the empirical performance of those two rules. The reason is
that there were considerable financial turmoil in the Swedish exchange rate markets during this quarter. Among
other things, the Riksbank raised the over-night interest rate to 500 percent (annualized rate) during this quarter
in order to defend the Swedish Krona.
10The reason why we include foreign output HP-detrended and not in growth rates in the VAR is that the

level of foreign output enters the DSGE model (e.g., in the aggregate resource constraint). In the state-space
representation of the model, which links the theoretical model to the observed data, we subsequently add the
unit-root world productivity shock and the stationary asymmetric (or foreign) technology shock to the business
cycle component of foreign output in order to obtain the observed level of foreign GDP. This enables us to identify
the stationary asymmetric technology shock, since the process for detrended foreign output is identified from the
VAR and the process for the (unit root) world productivity is identified from this and the domestic quantities.
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To compute the equilibrium decision rules, we proceed as follows. First, we stationarize all
quantities determined in period t by scaling with the unit root technology shock zt. Then, we
log-linearize the model around the constant steady state and calculate a numerical (reduced
form) solution with the AIM algorithm developed by Anderson and Moore (1985).

3. Estimation

3.1. Estimating the DSGE model

We start the empirical analysis by estimating the DSGE model, using a Bayesian approach
and placing a prior distribution on the structural parameters. To estimate the model we use
quarterly Swedish data for the period 1980Q1 − 2004Q4. All data were taken from Statistics
Sweden, except the repo rate which were taken from Sveriges Riksbank. The nominal wage is
taken from Statistics Sweden’s short term wage and salary statistics11 and is deflated by the
GDP deflator. The foreign variables on output, the interest rate and inflation are weighted
together across Sweden’s 20 largest trading partners in 1991 using weights from the IMF.12

We include a large set of variables in the observed data vector, and match the following 15
variables: the GDP deflator, the real wage, consumption, investment, the real exchange rate,
the short-run interest rate, hours worked, GDP, exports, imports, the consumer price index
(CPI), the investment deflator, foreign output, foreign inflation and the foreign interest rate.
As in Altig et al. (2003), the unit root technology shock induces a common stochastic trend in
the real variables of the model. To make these variables stationary we use first differences and
derive the state space representation for the following vector of observed variables

Ỹt =
[ πdt ∆ ln(Wt/Pt) ∆ lnCt ∆ ln It x̂t Rt Ĥt ∆ lnYt...

∆ ln X̃t ∆ ln M̃t πcpit πdef,it ∆ lnY ∗t π∗t R∗t ]0.
. (21)

The growth rates are computed as quarter to quarter log-differences, while the inflation and
interest rate series are measured as annualized quarterly rates. It should be noted that the
stationary variables x̂t and Ĥt are measured as deviations around the mean, i.e. x̂t = (xt − x) /x
and Ĥt = (Ht −H) /H, respectively. We choose to work with per capita hours worked, rather
than total hours worked, because this is the object that appears in most general equilibrium
business cycle models.13

In comparison with prior literature, such as for example Justiniano and Preston (2004) and
Lubik and Schorfheide (2005), we have chosen to work with a large number of variables in
order to facilitate identification of the parameters and shocks we estimate. For instance, despite
the fact that the foreign variables are exogenous, we include them as observable variables as
they enable identification of the asymmetric technology shock and are informative about the
parameters governing the transmission of foreign impulses to the domestic economy. We estimate
13 structural shocks (see equation (17)) where 5 are assumed to be identically independently

11The wage series for the first part of our sample is compiled by Friberg (2006).
12The shares of import and export to output are increasing from about 0.25 to 0.40 and from 0.21 to 0.50

respectively during the sample period. In the model, import and export are however assumed to grow at the
same rate as output. Hence, we decided to remove the excess trend in import and export in the data, to make
the export and import shares stationary. For all other variables we use the actual series (seasonally adjusted with
the X12-method except the variables in the GDP identity which were seasonally adjusted by Statistics Sweden).
13We used working age population to generate hours per capita. See Christiano, Eichenbaum and Vigfusson

(2003) for a discussion on using per capita adjusted hours versus non-adjusted hours.
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distributed.14 In addition to these there are eight shocks provided by the exogenous (pre-
estimated) fiscal and foreign VARs, whose parameters are kept fixed at their posterior mean
estimates throughout the estimation of the DSGE model parameters. The shocks enter in such
a way that there is no stochastic singularity in the likelihood function.15 To compute the
likelihood function, the reduced form solution of the model is transformed into a state-space
representation mapping the unobserved state variables into the observed data. We apply the
Kalman filter to calculate the likelihood function of the observed variables, where the period
1980Q1-1985Q4 is used to form a prior on the unobserved state variables in 1985Q4 and the
period 1986Q1-2004Q4 for inference.

The joint posterior distribution of all estimated parameters is obtained in two steps. First,
the posterior mode and Hessian matrix evaluated at the mode is computed by standard numerical
optimization routines. Second, the Hessian matrix is used in the Metropolis-Hastings algorithm
to generate a sample from the posterior distribution (see Smets and Wouters (2003), and the
references therein, for details). The results reported are based on a sample of 500,000 post
burn-in draws from the posterior distribution.

We choose to calibrate those parameters which we think are weakly identified by the variables
that we include in the vector of observed data. These parameters are mostly related to the
steady-state values of the observed variables (i.e., the great ratios: C/Y , I/Y and G/Y ).16 An
alternative approach could be to include these parameters in the estimation. However, such a
strategy would require a different set of variables to ensure proper identification, or conditioning
the likelihood on the initial levels of the ratios, but would not yield different results since these
parameters would simply capture the sample mean of the great ratios.

The parameters we choose to estimate pertain mostly to the nominal and real frictions in
the model as well as the exogenous shock processes. Table 1 shows the assumptions for the
prior distribution of the estimated parameters. The location of the prior distribution of the
43(51) estimated parameters with no break (break) in the monetary policy rule corresponds to
a large extent to those in Adolfson et al. (2005b) on Euro area data. There are, however, some
important differences in the choice of prior distribution to take notice of. First, the priors on
the price stickiness parameters are chosen based on survey evidence on the frequency of price
changes from a large number of Swedish firms. Apel, Friberg and Hallsten (2005) report that
prices in Swedish firms adjust only infrequently; the median firm adjusts the price once a year.
Hence, the price and wage stickiness parameters are set so that the average length between price

14The shocks that are assumed to be iid are the monetary policy shock, the markup shock in the domestic
goods market, as well as the markup shocks the importing consumption, importing investment and exporting
goods markets.
15Even if there is no stochastic singularity in the model we include measurement errrors in the 12 domestic

variables, since we know that the data series used are not perfectly measured and at best only approximations
of the ’true’ series. In particular it was hard to remove the seasonal variation in the series, and there are still
spikes in for example the inflation series, perhaps due to changes in the collection of the data. The variance
of the uncorrelated measurement errors is set to 0 for the foreign variables and the domestic interest rate, 0.1
percent for the real wage, consumption and output, and 0.2 percent for all the other variables. This implies that
the fundamental shocks explain about 90-95% of the variation in most of the variables. The measurement errors
capture some of the high frequency movements in the data but not fluctuations related to the business cycle. Note
also that our estimation results are robust to changning the size of the measurement errors (see the Appendix).
16The calibrated parameters are set to the following: the money growth μ = 1.010445; the discount factor

β = 0.999; the depreciation rate δ = 0.01; the capital share in production α = 0.25; the share of imports in
consumption and investment ωc = 0.40 and ωi = 0.70, respectively; the share of wage bill financed by loans
ν = 1; the labour supply elasticity σL = 1; the wage markup λw = 1.05; inflation target persistence ρπ = 0.975;
the steady-state tax rates on labour income and consumption τy = 0.30 and τc = 0.24, respectively; government
expenditures-output ratio 0.30; the subsitution elasticity between consumption goods ηc = 5; and the capital
utilization parameter σa = 106 so that there is no variable capital utilization.
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and wage adjustments is 4 quarters. Second, the prior mean for the standard error of the markup
shocks are all set to 1. This is about three times the prior mean in Adolfson et al. (2005b). The
choice is based on the fact that Sweden is a much smaller economy than the Euro area and is
therefore presumably expected to be subject to larger markup shocks. This is consistent with
the observation that not only domestic, but also import prices are substantially more volatile
than what is observed for the Euro area.

We choose identical priors for the parameters in the monetary policy rule before and after
the adoption of an inflation target in 1993Q1. This is a useful benchmark prior for communi-
cating the results, and allows us to assess how parameters change between the regimes due to
information in the data and not due to different priors.

3.2. Detecting model misspecification using a VAR with a DSGE prior

The main Bayesian tool for contrasting the empirical coherence of different DSGE models is the
posterior distribution over the set of compared models, wherein the marginal likelihood enters
as the most essential ingredient. Such a model comparison is of course only a relative one,
however. It may very well be the case that all of the models under comparison are severely
misspecified. One way to investigate this is to compare their marginal likelihoods to those of
more flexible empirically oriented models, such as VARs (see e.g. Smets and Wouters, 2003).
Bayesian model probabilities have great appeal, but there is no escaping from the fact that they
are sensitive to the choice of prior. This sensitivity may not have dramatic effects when the
models under consideration are similar, and the prior is elicited in essentially the same way.
This is not the case in the DSGE versus VAR comparison, however, as the statistically oriented
priors traditionally used for reduced form VARs (e.g. Litterman, 1986) are radically different
from the micro-based economic priors in DSGE models.

Del Negro and Schorfheide (2004) introduce an interesting alternative way to assess the
degree of misspecification in DSGE models using Bayesian techniques. Del Negro, Schorfheide,
Smets and Wouters (2006) extends the Del Negro-Schorfheide approach and re-interpret it from
a different view-point. The idea is to compare the marginal likelihood of the possibly misspecified
DSGE model to that of a VAR with a prior centered on the same DSGE model with the tightness
of the prior determined by a single scalar-valued parameter λ (for details see Appendix 2). The
DSGE-based prior has the effect of pulling the unrestricted VAR estimates toward the subspace
where the DSGE restrictions are satisfied. In the limit λ = ∞, the prior imposes the DSGE
restrictions with probability one, and the VAR thus collapses to the (VAR approximation of the)
DSGE model. As λ gets smaller the prior becomes increasingly less informative and the Bayesian
estimates of the VAR coefficients approach the OLS estimates. Del Negro and Schorfheide (2004)
suggest computing the marginal likelihood of the VAR with a DSGE-based prior for different
choices of λ and subsequently find the optimal λ, which we denote by λ̂. A large λ̂ then means
that the implied cross-equation restrictions from the DSGE model are highly compatible with
the observed data. A λ̂ on the lower end of the scale suggests a preference for a prior on the
VAR with a minimal use of the DSGE restrictions, which therefore cast doubt on the empirical
coherence of the DSGE model.

Even if the DSGE model do not possess a finite order VAR representation, the auxiliary
VAR model mainly works as a tool to relax the restrictions in the DSGE model in our analysis,
and obtain a specification with superior empirical fitness. The VAR is not required to nest the
underlying structural model for this analysis to remain sensible since the moments of the DSGE
model that are used to form the prior on the VAR are exact regardless of the quality of the
approximation (see also Del Negro et al., 2006). This means that a large λ̂ still indicates that it
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is a good idea to use the cross moments from the DSGE model in the formation of a prior, in
the sense that such a prior agrees well with the likelihood function.

The estimated VAR model contains the 15 observed variables that are used in the DSGE
estimation (see equation (21)), where non-stationary variables enter in first differences. However,
the unit root technology shock in the theoretical DSGE model induces a common stochastic
trend in the levels of all real variables, which implies that the levels of the variables may contain
information about the current state of the economy. We therefore also estimate a vector error
correction model (VECM) with a DSGE-based prior, following Del Negro et al. (2006), by just
adding the cointegrating relations of the DSGE model to the VAR.

Given that the DSGE model allows all the reduced form parameters to change as a result
of the regime shift, even if only a subset of the structural parameters change (i.e., the conduct
of monetary policy), the same must be true in the VAR/VECM model. We therefore allow for
a potential break in all the VAR/VECM parameters (lag-polynominal and covariance matrix)
in t = 1993Q1. However, the VAR parameters in the two regimes coincide in all dimensions
except those related to the monetary policy change, which an unrestricted estimation of the
VAR parameters would ignore. Here we center the prior on the DSGE model with a break in
the monetary rule which takes this fact into account. It should also be noted that although it
is straightforward to use different prior tightness on the DSGE cross restrictions in these two
subperiods, we restrict λ to be the same for all t.

4. Results

4.1. Parameter estimates and marginal likelihood comparison

In Table 1 we report the priors along with the posterior median and standard deviation for
the parameters in the various model specifications with different policy rules. The first four
posterior results pertain to the model with a “standard” UIP condition while the last column
relate to the model with the modified UIP condition.

A clear message from Table 1 is that a fixed exchange rate rule during the first part of the
sample 1986Q1−1992Q4 is not preferred by the data. The log marginal likelihoods clearly favor
any of the other policy rules. Even a specification of the model without allowing for a break
in the policy rule is preferable to the fixed exchange rate version. The no-break policy rule is
also preferred to the the target zone specification which has a high prior value on the parameter
multiplying the change in the nominal exchange rate (rs). For the target zone rule, we also
notice that the obtained posterior value for rs is substantially lower than the prior value, so
the data do not seem to be supportive of a strong exchange rate response in the policy rule.17

Moving to the third formulation of the policy rule using a Taylor type instrument rule with a
discrete break, we see, however, that this more flexible specification of the rule during the first
part of the sample induces a strong improvement in the log marginal likelihood compared to the
no-break case. Our interpretation of these results is that there is clear evidence in favor of a
break in the monetary policy conduct, but that the fixed-exchange rate/target zone versions of
the policy rule are not empirically successful. Perhaps due to lack of credibility since the more
flexible rule with a larger role for output stabilization appears to be more empirically coherent.

Turning to the “deep” parameters, we find that they are similar in the different specifications
of the model, the main exception being the degree of wage stickiness which is found to be sub-

17 It should, however, be noted that the estimated target zone rule still keeps the nominal exchange rate within
a band of ± 2%. This is actually similar to what is obtained under the Taylor type rule with a break, and the
exchange rate volatility under the first part of the sample is consequently about the same under the two rules.
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stantially lower using the fixed-exchange rate or target-zone rules. For the other specifications,
the posterior of the wage stickiness parameter essentially equals the prior.18 For the two model
specifications using Taylor-type instrument rules, we see that the policy rule parameters are
similar in the two regimes, with the exception of the estimated standard deviations of the infla-
tion target shock and the monetary policy shock which are considerably lower after the adoption
of an inflation target. Consequently, monetary policy in Sweden seems to have become more
predictable after the adoption of an inflation target in 1993. Notably, the posterior distribution
for the coefficient on lagged inflation (rπ) in equation (15) is essentially identical to the prior
distribution, suggesting weak identification of this parameter (see also Appendix 1) . However,
by lowering and raising the prior mode and the standard deviation, we found that high values
on this parameter is not favored by the Bayesian model probabilities but that values between
1.1-2 appear to be about equally plausible (given the other priors).19

We then go on to test the specification with the modified UIP condition. The idea is that
the negative correlation between the risk premium and the expected change in the exchange
rate via the UIP condition will affect the persistence in the real exchange rate after a contrac-
tionary monetary policy shock. Looking at the parameter estimates in Table 1 we see that
the persistence in the risk premium shock decreases in the specification with the modified UIP
condition compared to the specification with a standard UIP condition. A lower persistence in
the shock to the risk premium is now needed to capture the observed autocorrelation in the
real exchange rate since the modified UIP condition induces endogenous inertia in the risk pre-
mium through the negative correlation between the risk premium and the expected exchange
rate change. While there is negative correlation between these parameters locally, it is very
important to understand that the empirical relevance of these parameters for the entire model is
identified by the fact that we evaluate the model’s empirical coherence on a number of variables
in addition to the real exchange rate. Consequently the risk premium parameter φ̃s is identified
separately from the risk-premium process parameters because the former parameter changes all
shocks’ propagation to the other variables in the model via the exchange rate. To understand
this mechanism we have conducted the following experiments.

First, we reestimated the model using uniform priors on both φ̃s and ρφ̃ and computed

the posterior median of φ̃s and ρφ̃ to be 0.67 and 0.48, respectively, which are in line with
the results in Table 1. The associated log marginal likelihood is −2249.8, which is a slight
improvement compared to the benchmark in Table 1 (−2252.5). Second, we calibrated φ̃s (ρφ̃)

to zero, and reestimated the model using a uniform prior on ρφ̃ (φ̃s). The estimation outcome

was ρφ̃ = 0.94 (φ̃s = 0.79) and the log marginal likelihood −2269.9 (−2256.8). While the φ̃s and
ρφ̃ parameters move somewhat in relation to the benchmark result to compensate for the missing
source of exchange rate persistence in these cases, it is clear from the associated log marginal
likelihood values that the data support the existence of exchange rate persistence both through
the modified UIP condition and through autocorrelated risk premium shocks. In particular,
the drop in log marginal likelihood when omitting the modified risk premium is substantial,
a finding in line with the key message of the paper. Third, we constructed contour plots of

18We have experimented with both a higher and a lower prior mode, as well as a uniform prior, on the wage
stickiness parameter, where the results indicate that the data is only weakly informative on this parameter (i.e.,
the posterior moves less than one-to-one with the prior). Since our prior belief is that wage stickiness is an
important fricition we want to allow for uncertainty in the wage setting behavior, why we use an informative prior
rather than calibrating this parameter.
19Lowering the prior mode to 1.1 results in a posterior mode of 1.15 and a log marginal likelihood of about

-2253. On the other hand, if the prior mode is increased to 5 with a prior standard deviation of 1.5, the posterior
mode is 2.1 with a log marginal likelihood of -2258.
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the likelihood function in the
n
φ̃s, ρφ̃

o
-space conditional on the posterior median of the other

parameters (see Appendix 1). While we found some degree of substitutability between φ̃s and ρφ̃
locally around the posterior mode (i.e., the likelihood is nearly constant in a neighborhood of the
posterior mode), the likelihood is well shaped globally. However, dropping all observed variables
except the real exchange rate in the measurement equation and drawing the same contour plots
resulted in an ill-behaved corner solution (φ̃s = 1, ρφ̃ = 0). In conclusion, it is our belief that the
parameters in the modified version are well identified. This is also manifested by the difference
in log marginal likelihoods, where the model with the modified UIP condition obtains a posterior
probability of 1.0. The data thus indicate that there is in fact a negative correlation between
the risk premium on foreign bonds and the expected exchange rate development in Sweden.

Figure 1 shows the impulse response functions after a one standard deviation shock to mon-
etary policy with and without the modified UIP condition. The solid lines depict the median
and 95% interval posterior responses in the specification with a modified UIP condition, and the
dashed lines show the responses in the specification with a standard UIP condition. In either
specification the contractionary shock has a gradual effect on both output and inflation, with a
maximum impact in about 1 to 112 years which is in line with the ’conventional wisdom’ on the
transmission of monetary policy originally stemming from VARs. The interest rate increase also
makes the exchange rate appreciate directly, via the UIP condition. This in turn feeds into the
import prices but not fully since prices are sticky which forces the exchange rate pass-through
to be incomplete. Also domestic and export prices are affected to some extent through the
marginal cost of imported inputs. In the specification including a standard UIP condition, the
appreciation is immediate before the exchange rate gradually returns to its equilibrium value
(dashed lines). However, in the model with the modified UIP condition the real exchange rate
appreciates only slowly and gradually (solid lines), in contrast. The larger persistence in the
modified UIP condition, through the lagged dependence between the exchange rate and the risk
premium, turns the real exchange rate from a spiked to a hump-shaped response. The reason
is that the new specification of the UIP condition, with a negative correlation between the risk
premium and the expected exchange rate change, induces the households to require a lower risk
adjusted expected return on their foreign investments relative to the remuneration on domestic
bonds since the exchange rate is expected to depreciate in the future. But to then equalize the
returns on the different bonds in the next period, the exchange rate necessarily has to appreciate
even more in the forthcoming periods. Consequently, compared to the standard UIP specifica-
tion the DSGE model with a modified UIP condition produces impulse response functions after
an unexpected monetary policy shock that appear to come qualitatively closer what is observed
in estimated VARs regarding the real exchange rate (see Adolfson et al., 2006 for evidence on
Swedish data).

4.2. Forecasting performance

Even if there is a close connection between the out-of-sample predictive performance and Bayesian
model posterior probabilities, there are reasons to also carry out a traditional out-of sample pre-
diction exercise (see Adolfson et al., 2005a, for such arguments). We therefore go on to analyzing
the out-of-sample precision of the forecasts from the different DSGE specifications in detail. For
comparison we also include the forecasts from a VAR model including the 15 variables we match
the DSGE models against, using both maximum likelihood estimates of the parameters and
Bayesian posterior distributions. We also contrast the alternative DSGE forecasts to naïve fore-
casts such as univariate random walks and the means of the most recent data observations.
This is especially interesting for the exchange rate since it has proven to be difficult to beat
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the random walk for the nominal exchange rate in terms of the forecasting precision (see, e.g.,
Meese and Rogoff, 1983).

The forecast accuracy are assessed using a standard rolling forecast procedure where the
models’ parameters are estimated up to a specified time period where the forecast distribution
for the next 8 quarters subsequently is computed. The estimation sample is then extended to
include one more (observed) data point, and the dynamic forecast distribution is computed for
another 8 quarters. The forecasts are evaluated between 1999Q1 and 2004Q4 which gives 24
observations for the 1-step ahead forecast and 16 observations for the 2-year ahead forecast. It
should be noted that the VARs are re-estimated at this quarterly frequency while the DSGE
models are re-estimated only yearly.

Figure 2a shows the root mean squared forecast errors in percentage terms for the 12 domestic
variables at 1 to 8 quarters horizon from the two alternative DSGE models with a standard
UIP condition or the modified UIP condition, allowing for a policy regime shift in the Taylor
type instrument rule. The forecast errors are calculated based on year-to-year forecasts for all
variables except for the real exchange rate and hours worked which are measured as quarterly
deviations from the steady-state.

By comparing the specifications with and without the modified UIP condition (solid and
dashed lines, respectively) we see that the forecast accuracy in particular for the real exchange
rate and the interest rate improves when the modified UIP condition is included in the model.
The reason is that the low persistence in the standard UIP condition makes the real exchange
return too rapidly to the steady state. Also the precision of the CPI inflation forecast increases
at the medium to long-term horizons. On the other hand, the forecast accuracy of hours worked,
output and investment are worse than in the specification with a standard UIP condition. Taken
together, the joint forecasting precision (not shown) indicates that the two models perform
equally well when accounting for all variables, while the model with the modified UIP condition
has somewhat better accuracy when taking the forecasts of the subset of key macroeconomic
variables, CPI inflation, output, interest rate, real exchange rate, exports and imports, into
account.

To get a sense for the precision of the forecasts we examine the actual forecasts from the two
models using the standard UIP and the modified UIP conditions. Figure 3 shows the rolling
forecasts for CPI inflation, the real exchange rate and the interest rate between 1999Q1 and
2004Q4 from the standard and modified UIP specifications together with the actual outcomes.
It is clear that the modified UIP enables the model to produce more persistent real exchange
rate forecasts, while the mean reversion of the real exchange rate is a lot faster when using the
standard UIP condition. It is also clear from Figure 3 that the shape of the forecasts for the CPI
inflation and the interest rate are affected to a smaller extent. From a policy making perspective
we believe that the model with the modified UIP is clearly preferable because it is unlikely that
a central banker would like to use a model which always implies that the forecast path of the
real exchange rate is quickly mean reverting no matter what.

In Figure 2b we compare the DSGE model including the modified UIP condition with two
VAR models (Bayesian and maximum likelihood estimates) and two naïve setups (random walks
and the means of the eight most recent data observations).20 The DSGE model compares very
well to both the VAR and the BVAR for almost all variables. The exception is hours worked.
The precision in both the output and the CPI inflation forecasts from the DSGE is line with
the more empirically oriented VAR models, and at the two-year horizon they are in fact better.
Especially interesting are the real exchange rate and interest rate forecasts where the DSGE

20 It should be noted that the we are using an informative prior on the long-run mean in the BVAR such that the
forecasts converge asymptotically to the steady state in the DSGE model (see Adolfson et al., 2005a, for details).
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model outperforms the two VARs at just about all horizons. In particular the real exchange
rate forecasts from the DSGE does remarkably well and beats also the random walk as well
as the means of the latest eight observations. More problematic is perhaps that the interest
rate forecasts in the structural model is not able to surpass the random walk at any horizon.
Nevertheless, taking the joint forecast precision of all variables into account, the DSGE model
performs better than both the VAR and the BVAR at all horizons (not shown). The joint
forecasts from the DSGE are more precise than joint forecasts from the VAR or the BVAR.
Consequently, the DSGE model with a modified UIP condition appear to be the best forecasting
tool out of the different models we compare.

4.3. Model misspecification

According to the Bayesian model posterior probabilities and the shape of the impulse response
functions after a monetary policy shock we know that the DSGE specification including the
modified UIP condition and allowing for changes in the policy rule is preferred by the data.
However, as argued in Section 3.2, we still only know that this specification is preferred over
the competing variants of the DSGE model; it may very well be the case that all of these
models, including the winning specification, suffer from misspecification. Here we use the tools
developed by Del Negro and Schorfheide (2004) and extended by Del Negro, Schorfheide, Smets
and Wouters (2006) to gauge the degree of misspecification in a DSGE model by comparing its
marginal likelihood to the marginal likelihood of a VAR with a prior centered on that particular
DSGE model (see the Appendix for details).

Table 2 reports the log marginal likelihoods when varying the tightness in the prior on
the VAR/VECM model (λ) from very diffuse to more and more informative. Or in other
words, when letting the cross-equation DSGE restrictions become more and more enforced in
the VAR/VECM estimation. The table shows estimation results from the VAR and the VECM
with a break in the parameters using the DSGE model with a Taylor-type instrument rule
including a shift in the policy parameters as the prior. The VAR and the VECM are estimated
using two different DSGE priors; the DSGE specification with a standard UIP condition and
the DSGE specification including the modified UIP condition. By comparing the hybrid models’
marginal likelihoods when using these two DSGE priors we can examine the importance of the
implied DSGE restrictions when taking possible misspecification of the DSGEs into account.

The results can be summarized as follows. First, according to the difference in marginal
likelihoods between the structural DSGE model and the VAR/VECM approximations of the
DSGE (i.e., λ =∞), the VECM provides a better approximation of the DSGE than the VAR.
The reason is that the unit root technology shock in the theoretical DSGE model induces a
common stochastic trend in the levels of all real variables, which makes the DSGE contain six
cointegrating relations. Allowing the approximation to also hold cointegration vectors (which is
done in the VECM but not in the VAR) therefore improves the marginal likelihood difference
between the resulting hybrid model and the DSGE.21 Taken together we believe that the VECM
approximation of the DSGE is satisfactory. As explained in Section 3.2 the analysis correctly
identifies whether the DSGE is a useful prior also in the case with a less accurate approximation
(which holds true for the VAR). However, as the approximation error increases it becomes more
difficult to measure in which dimensions the cross-equation restrictions need to be relaxed since
the DSGE model does not map well into the VAR in this case. For this reason we only use the

21Also a comparison of the autocovariance function of the DSGE-VAR and DSGE-VECM with λ = ∞ to the
autocovariance function of the DSGE model indicates that the addition of cointegration relations to the VAR
helps to improve the approximation of the DSGE model (see the Appendix).
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VECM setup below when trying to assess in which dimensions the DSGE is misspecified.
The optimal value of λ is around 5 in the VAR model and 7 in the VECM model. These

numbers are much larger than those reported in Del Negro and Schorfheide (2004) (λ̂ = 0.6)
and Del Negro et al. (2006) (λ̂ = 0.75 for the VAR and λ̂ = 1 for the VECM). It may seem as if
the restrictions in our DSGE model compares favorably to previously studied models since the
prior tightness λ is a measure of prior concentration of the VAR prior around the DSGE cross
moments. However, it should be noted that the optimal lambdas are not comparable across
studies. The interpretation of the prior tightness λ is directly dependent on the model size and
the size of the data set. One complicating circumstance is that we need λ large enough for the
prior to be proper, which is a necessary condition for computing meaningful marginal likelihoods.
Part of the artificial DSGE observations that forms the prior (usually referred to as a training
sample) is consumed in the process of turning the initially improper prior into a proper density
(λmin), and is therefore not used in the actual model evaluation.22 One way to control for the
fact that λmin is dependent on the model and sample size is to report the marginal likelihood
as a function of the ratio of the number of post-training artificial observation to the number
of actual observations, λ − λmin, or perhaps even better, the number of post-training artificial
observations and the size of the actual data.23

Table 2 also shows that the VECMs always have smaller marginal likelihood compared
to the corresponding VARs. Irrespective of the choice of model and the size of λ, there is
essentially zero posterior probability placed on the VECM compared to the VAR. This suggests
that there is weak support in the data for the cointegration restrictions in the DSGE model. This
result is more or less expected as graphs on the supposedly stationary cointegration relations
reveal that at least some of them are on the borderline to non-stationarity (not shown here).
Complementary evidence on this issue is given in Adolfson et al. (2005a) where it is reported
that imposing cointegration restrictions in the estimation of a DSGE on Euro area data produces
forecasts that are less accurate compared to when the model consistent cointegrating vectors are
not imposed.

Turning to the comparison of the specifications with and without the modified UIP con-
dition, we see in the VECM that the difference in marginal likelihood between the two UIP
specifications is increasing when λ is increasing from its minimum value up to the (almost)
DSGE approximating value of∞. For the VAR models the results are less clear. Given that the
restrictions in the DSGE have more impact on the estimated VAR/VECM when λ is large, it is
expected that the marginal likelihood difference will approach that of the two structural DSGEs
as λ increases. In the DSGE approximating VECMs the difference between the standard and
modified UIP specifications is 6 log units in favour of the modified condition. This should be
compared with 15 log unit differences that are obtained for the structural DSGE. However, the
Bayesian posterior model probabilities at the optimal λ (where the degree of sharpness in the
DSGE prior maximizes the marginal likelihood) indicate that the difference in marginal likeli-
hoods between the VAR/VECM specifications using the DSGE with or without the modified
UIP condition is in fact relatively small.

One way to assess how much and in what dimensions the cross equation restrictions has

22The prior is proper if λ ≥ λmin = [n(p + 1) + q]/T, where n is the number of endogenous variables in the
VAR with p lags, q the number of exogenous variables and T the number of actual data observations (see the
Appendix for details). This is further complicated by the fact that we have a break in our model, which requires
two training samples, one before and one after the regime shift. In our application we have n = 15 endogenous
variables in the VAR, p = 4 lags and T = 48 observations after the regime shift, so that λmin is close to 2.7, which
clearly shows that this aspect is quite important for the interpretation of the results.
23For instance, the optimal number of post-training artificial observations in the DSGE-VECM is 195 to be

compared with the 28 and 48 actual data observations in the two regimes, respectively.
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been relaxed is to compare the cross correlation functions for λ =∞ and λ = bλ along with the
standard deviations of the variables taken from the VECM covariance matrix. This is done in
Figure 4. From the figure we see that the differences in both autocorrelations and standard devi-
ations are generally large both contemporaneously and over time, suggesting that bλ = 7 implies
a substantial relaxation of the DSGE’s cross equation restrictions on both the VAR polyno-
mial and the covariance matrix. In particular the differences are large for real exchange rate’s
autocorrelations and standard deviation, indicating that the model is still misspecified in this
dimension even when including our modified UIP condition.24 It should, however, be acknowl-
edged that there is a great amount of uncertainty regarding the univariate point estimates of
the correlations, but the improvement in log marginal likelihood for the hybrid model compared
to the structural DSGE suggest that these differences are important when taken together.

5. Conclusions

In this paper we have tried to improve on a small open economy dynamic model in the new
Keynesian tradition to make it comply better with the empirical evidence on the transmission
mechanism of monetary policy and the forward discount puzzle. The former is especially im-
portant for a policy making institution such as a central bank. Even if a DSGE model is able
to capture the main development of the key macroeconomic time series and can forecast these
well, one may also want to use the structural model for carrying out policy experiments such as
evaluating alternative interest rate paths. It is then of crucial importance that the mechanisms
in the model conform to the central bank’s view of the workings in the economy.

We have therefore addressed the common problem that open economy sticky price models
where agents are allowed to freely trade in foreign and domestic bonds are typically not able to
reproduce the observed persistence and volatility of the real exchange rate. This is troublesome
when analyzing the effects of changes in monetary policy because the UIP condition is an
integral part of determining how interest rate adjustments affect nominal and real exchange
rates. The way the exchange rate responds to various shocks through the UIP condition is also
important for many macroeconomic variables because of the nominal frictions in the model.
Sticky prices increase the exchange rate’s effect on relative prices which in turn have an impact
on most aggregate quantities and prices. To be able to generate intrinsic persistence of the
exchange rate in the model, we introduced a negative correlation between the risk premium
on foreign investments and the expected change in the exchange rate, following the empirical
evidence in for example Engel (1996). Our tools to evaluate the modification empirically were
Bayesian posterior model probabilities, impulse response functions, out-of-sample forecasts, and
an analysis of the different DSGE restrictions’ empirical coherence by examining the suitability
of the DSGEs as a prior for a VAR model.

We find that the modified UIP condition is strongly preferable to a standard specification
according to the Bayesian posterior odds, and that it has a significant effect on the impulse
response functions of a monetary policy shock. The transmission mechanism of monetary policy
in the modified model is more in line with the results obtained from the identified VAR literature,
in the sense that the effects on the real exchange rate becomes hump-shaped with a peak effect
after year. The modified DSGEmodel also produces more accurate forecasts on the real exchange
rate and the interest rate compared with a standard UIP specification. We therefore think it

24Regarding the quantitative role of the modified UIP condition, there are in fact some differences between
the cross correlation functions of the real exchange rate in the two specifications also under the optimal lambda
(see the Appendix). However, judging from the difference in marginal likelihoods between the two models these
discrepancies do not seem to be jointly important.
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is worthwhile exploring alternative structural models of the interest rate parity condition. This
remains an important challenge to academics as well as model builders at central banks.
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 Table 1: Prior and posterior distributions 
Parameter  Prior distribution Posterior distributions 
   Instrument 

rule 
Fixed 

exchange rate 
Semi-fixed 

exchange rate 
Instrument rule with policy break 

   without policy 
break 

rule rule  
UIP 

 
Modified UIP 

  type mean 
std. 
dev. 
/df 

med-
ian std.  med-

ian std.  med-
ian std.  med-

ian std.  med-
ian std.  

Calvo wages  wξ  beta 0.750 0.050 0.751 0.047 0.518 0.041 0.669 0.046 0.743 0.049 0.752 0.049 
Calvo domestic prices dξ  beta 0.750 0.050 0.862 0.046 0.852 0.048 0.885 0.027 0.868 0.044 0.838 0.044 
Calvo import cons. 
prices cm ,ξ  beta 0.750 0.050 0.896 0.017 0.922 0.013 0.900 0.014 0.900 0.017 0.901 0.017 
Calvo import inv.  prices im ,ξ  beta 0.750 0.050 0.946 0.010 0.948 0.008 0.943 0.007 0.946 0.010 0.944 0.010 
Calvo export prices  xξ  beta 0.750 0.050 0.868 0.021 0.870 0.016 0.874 0.020 0.869 0.021 0.883 0.020 
Indexation wages wκ  beta 0.500 0.150 0.290 0.098 0.238 0.086 0.287 0.098 0.292 0.100 0.313 0.103 
Indexation prices  κ  beta 0.500 0.150 0.213 0.059 0.163 0.069 0.194 0.052 0.212 0.061 0.218 0.061 
Markup domestic  dλ  truncnormal 1.200 0.050 1.196 0.050 1.197 0.049 1.200 0.050 1.189 0.048 1.189 0.049 
Markup imported cons.  cm ,λ truncnormal 1.200 0.050 1.585 0.033 1.782 0.031 1.580 0.032 1.578 0.033 1.574 0.034 
Markup.imported invest.  im ,λ truncnormal 1.200 0.050 1.138 0.043 1.206 0.040 1.168 0.041 1.138 0.041 1.136 0.042 
Investment adj. cost  ''~S  normal 7.694 1.500 8.593 1.306 9.193 1.290 9.335 1.337 8.706 1.307 8.884 1.318 
Habit formation  b  beta 0.650 0.100 0.663 0.061 0.763 0.044 0.793 0.051 0.676 0.066 0.653 0.064 
Subst. elasticity invest.  iη  invgamma 1.500 4 2.741 0.322 2.263 0.186 2.586 0.258 2.727 0.316 2.713 0.324 
Subst. elasticity foreign fη  invgamma 1.500 4 1.633 0.216 1.540 0.152 1.457 0.121 1.613 0.205 1.525 0.158 
Technology growth  zμ  truncnormal 1.006 0.0005 1.005 0.000 1.006 0.000 1.006 0.000 1.005 0.000 1.005 0.000 
Risk premium  φ~  invgamma 0.010 2 0.033 0.018 0.035 0.015 0.034 0.015 0.031 0.017 0.046 0.029 
UIP modification 

sφ
~  beta 0.500 0.15         0.611 0.063 

Unit root tech. shock  
zμρ  beta 0.850 0.100 0.827 0.073 0.823 0.075 0.811 0.075 0.831 0.075 0.844 0.075 

Stationary tech. shock  ερ  beta 0.850 0.100 0.932 0.041 0.986 0.006 0.991 0.006 0.942 0.039 0.932 0.046 
Invest. spec. tech shock  Υρ  beta 0.850 0.100 0.691 0.081 0.737 0.055 0.769 0.056 0.726 0.075 0.735 0.092 
Asymmetric tech. shock  *~zρ  beta 0.850 0.100 0.961 0.011 0.946 0.057 0.918 0.045 0.960 0.011 0.962 0.011 
Consumption pref. shock  

cζ
ρ  beta 0.850 0.100 0.601 0.133 0.495 0.107 0.554 0.102 0.630 0.133 0.744 0.133 

Labour supply shock  
hζ

ρ  beta 0.850 0.100 0.248 0.061 0.204 0.054 0.236 0.059 0.251 0.063 0.262 0.066 
Risk premium shock  φρ ~  beta 0.850 0.100 0.932 0.025 0.954 0.013 0.959 0.016 0.929 0.026 0.679 0.101 

Unit root tech. shock  zσ  invgamma 0.200 2 0.133 0.027 0.142 0.028 0.138 0.027 0.133 0.026 0.133 0.027 
Stationary tech. shock   εσ  invgamma 0.700 2 0.672 0.083 0.675 0.086 0.698 0.089 0.665 0.082 0.665 0.085 
Invest. spec. tech. shock   Υσ  invgamma 0.200 2 0.410 0.067 0.419 0.059 0.417 0.059 0.389 0.063 0.381 0.072 
Asymmetric tech. shock   *~zσ  invgamma 0.400 2 0.190 0.027 0.194 0.029 0.194 0.029 0.192 0.028 0.189 0.028 
Consumption pref. shock   

cζ
σ  invgamma 0.200 2 0.292 0.048 0.278 0.041 0.266 0.041 0.287 0.049 0.246 0.048 

Labour supply shock   
hζσ  invgamma 1.000 2 0.382 0.039 0.370 0.035 0.379 0.038 0.381 0.039 0.383 0.040 

Risk premium shock   φσ ~  invgamma 0.050 2 0.372 0.079 0.319 0.035 0.297 0.036 0.376 0.079 0.805 0.221 
Domestic markup shock   λσ  invgamma 1.000 2 0.774 0.078 0.796 0.075 0.753 0.071 0.769 0.078 0.799 0.084 
Imp. cons. markup shock 

cm ,λσ invgamma 1.000 2 1.168 0.125 1.536 0.163 1.190 0.131 1.168 0.127 1.135 0.120 
Imp. invest. markup 
shock im ,λσ invgamma 1.000 2 1.176 0.133 1.496 0.145 1.190 0.128 1.164 0.132 1.142 0.128 
Export markup shock   

xλ
σ  invgamma 1.000 2 0.994 0.156 1.196 0.164 1.130 0.151 1.004 0.152 1.026 0.144 

Interest rate smoothing  1,Rρ beta 0.800 0.050 0.909 0.016   0.827 0.039 0.879 0.022 0.883 0.025 
Inflation response  1,πr  truncnormal 1.700 0.100 1.664 0.099   1.710 0.098 1.679 0.100 1.679 0.100 
Diff. infl response  1,πΔr normal 0.300 0.050 0.095 0.030   0.288 0.048 0.133 0.049 0.156 0.056 
Real exch. rate response  1,xr  normal 0.000 0.050 0.046 0.027     0.039 0.030 0.018 0.027 
Nominal exch. response Sr  normal 100 10   106 calib. 2.0 0.8     
Output response  1,yr  normal 0.125 0.050 0.129 0.046   0.216 0.051 0.113 0.044 0.138 0.048 
Diff. output response  1,yrΔ  normal 0.063 0.050 0.152 0.036   0.142 0.050 0.127 0.041 0.120 0.046 
Monetary policy shock  1,Rσ  invgamma 0.150 2 0.249 0.024   2.335 0.778 0.398 0.060 0.398 0.066 
Inflation target shock  1,cπ

σ invgamma 0.050 2 0.116 0.041   0.083 0.054 0.148 0.067 0.248 0.085 

Interest rate smoothing 2,Rρ beta 0.800 0.050   0.884 0.018 0.864 0.021 0.896 0.018 0.874 0.022 
Inflation response  2,πr  truncnormal 1.700 0.100   1.725 0.090 1.747 0.089 1.709 0.099 1.718 0.097 
Diff. infl response  2,πΔr normal 0.300 0.050   0.127 0.023 0.143 0.025 0.104 0.026 0.120 0.027 

Real exch. rate response  2,xr  normal 0.000 0.050   0.022 0.019 -0.001 0.003 0.038 0.026 -0.023 0.020 

Output response  2,yr  normal 0.125 0.050   0.269 0.040 0.274 0.039 0.107 0.041 0.106 0.041 
Diff. output response  2,yrΔ normal 0.063 0.050   0.099 0.031 0.107 0.030 0.104 0.030 0.105 0.030 
Monetary policy shock  2,Rσ invgamma 0.150 2   0.102 0.013 0.094 0.011 0.104 0.013 0.103 0.013 
Inflation target shock  

2,cπ
σ invgamma 0.050 2   0.065 0.030 0.069 0.035 0.080 0.038 0.077 0.038 

Log marginal likelihood     -2285.8 -2636.72 -2348.24 -2268.33 -2252.57 



Table 2: Log marginal likelihood of VAR/VECM with DSGE prior (Taylor-type instrument rule with 
break) 

 DSGE-VAR DSGE-VECM 
λ  UIP Modified UIP UIP Modified UIP 

2.714 -2164.78 -2163.19   
2.929   -2190.79 -2187.77 

4 -1998.27 -1996.23 -2028.20 -2025.89 
4.5 -1980.51 -1979.88 -2002.60 -2000.46 
5 -1964.96 -1970.43 -1987.80 -1985.78 

5.5 -1970.78 -1965.86 -1979.47 -1977.53 
7 -1965.98 -1966.72 -1974.12 -1972.28 

7.5 -1968.72 -1969.46 -1975.74 -1973.91 
8 -1972.05 -1972.79 -1978.24 -1976.39 
10 -1988.94 -1987.02 -1992.72 -1990.83 
25 -2083.09 -2081.13 -2093.68 -2091.13 
50 -2143.73 -2140.50 -2164.52 -2160.00 
∞ -2232.06 -2227.65 -2270.78 -2265.08 

DSGE -2268.33 -2252.57 -2268.33 -2252.57 

Note:  The table displays laplace approximations of the log marginal likelihood. λ = 2.714 andλ = 2.929 are the minimal tightnesses for the 
VAR and VECM, respectively. Bold numbers indicate theλ  with the maximal log marginal likelihood. 
 



Figure 1: Impulse response functions (posterior median and 95% uncertainty intervals) to a one standard deviation monetary
policy shock, with standard (dahsed lines) and modified UIP condition (solid lines).
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Figure 2a: Root mean squared forecast errors for DSGEs with standard and modified UIP
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Figure 2b: Root mean squared forecast errors for DSGE, BVAR, VAR and naïve
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Figure 3: Actual data (thick line) and forecasts (thin lines) 1999Q1− 2004Q4 from the DSGE using different UIP specifications
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Figure 4: Comparing cross-correlation functions (CCF) from the DSGE-VECM with the modified UIP condition for λ=bλ (solid
lines) and λ=∞ (dashed lines). The subgraphs below the diagonal display the cross-correlation between the column variable and
the lag of the row variable. The opposite order applies to the upper diagonal graphs. The CCFs are computed at the posterior
mode estimates of the parameters within each model. The numbers in the bottom of the graphs are the standard deviations of
the respective variable in the λ=bλ case. The corresponding standard deviations for the case λ=∞ are displayed to the right of the
subgraphs.
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Appendix A. Estimation results

A.1. Prior vs. posterior plots

Figures A.1a to A.1c report the prior and posterior distributions for all estimated parameters
in the model including the modified UIP condition and using a flexible Taylor-type instrument
rule to model the pre-inflation targeting regime (i.e., the last model in Table 1). In accordance
with the results in Table 1, the figures show that the data is generally informative about the
parameters, as the posterior distributions differ from the priors, with a few exceptions (i.e., ξw
and rπ). The results for these parameters are discussed in greater detail in the main text.

A.2. Raw Metropolis chains

In Figures A.2a to A.2c we report the 500,000 post burn-in Metropolis draws for each parameter.
The Markov chain in Figure A.2 show that there are no clear trends or correlations between the
parameters in the model.

The CUSUM plots of the Metropolis draws are depicted in Figures A.3a to A.3c. The solid
line (labeled posterior) is the accumulated mean of the draws, while the dashed line (labeled
average) is a window average of the last 50, 000 draws. As expected from the raw Metropolis
draws, the CUSUM plots show no sign of a trending mean in the parameters throughout the
whole chain. Even if the window averages are varying slightly, there do not appear to be any high
correlation between the different parameters. In particular, we notice from Figures A.2 and A.3
that the risk premium parameters φ̃s, ρφ̃ and σφ̃ do not show any clear sign of cross-correlation
or time-varying means, supporting the discussion in the main text that these parameters are
well identified.

A.3. Sequential log marginal likelihoods

In Figure A.4, we plot the log marginal likelihood sequentially for each 50, 000th draw, using
all the preceding iterations in the computation of the marginal likelihood with the modified
harmonic estimator in Geweke (1999).25 The lines pertain to eight different probabilities of the
truncated elipsodes of the joint posterior distribution. As can be seen from Figure A.4, the spread
between the largest and smallest elipsodes is not very large after a couple of 100,000 draws. It
is also clear from the figure that the marginal likelihood converges after about 200,000 draws.
To obtain convergence, we found it to be of critical importance to obtain a good estimate of the
Hessian matrix. We start by maximizing the posterior density and evaluating the Hessian matrix
at the posterior mode using standard numerical optimization routines. Prior to the optimization
we transform all the parameters to the unconstrained domain (we use logit transformations
on parameters restricted to the unit interval, and a log transformation for strictly positive
parameters). Second, draws from the posterior distribution are generated using the Metropolis-
Hastings algorithm.

25The marginal likelihood of a model i is defined as mi = Li(θi;x)pi(θi)dθi, where Li(θi;x) is the usual
likelihood function of the model’s parameter vector conditional on the observed data x. pi(θi) is the prior
distribution of the model’s parameters. mi is the unconditional probability of the observed data, under the
assumed prior distribution, and is therefore a measure of model fit. The marginal likelihood is a relative measure
and should be compared across competing models. The Bayes factor comparing two models i and j is defined as
Bij = mi/mj .



A.4. Multivariate ANOVA

In Figure A.5, we report the multivariate potential scale reduction factor (MPSRF) based on four
independent Metropolis chains with different starting values consisting of 500,000 draws each.
The analysis is based on subsampling every 5th draw for computational reasons. Gelman et al.
(1995) argue that by rule-of-thumb, the MPSRF should be less than 1.1 to have a satisfactory
convergence. As is evident from Figure A.5, this requirement is fulfilled in our chains after
about 100, 000 draws (i.e, after 20,000 iterations in the plot), and after about 250,000 draws it is
down to less than 1.05. Figure A.5 also depicts the total variance in all the four Markov chains
together with the variance within each parallel chain. As the number of draws increases we see
that the difference between the total and within variation in the parallel chains decreases.

A.5. Contour plots

In the main text, we argue from using uniform priors and comparing Bayesian model probabilities
that the parameters associated with the UIP condition, φ̃s and ρφ̃, are well identified given our
set of observable variables in the measurement equation. In Figure A.6 we show contour plots of
the likelihood function in the

n
φ̃s, ρφ̃

o
−space conditional on the posterior median of the other

parameters. Figure A.6a shows the likelihood for different values of φ̃s and ρφ̃ using the entire

set of 15 observables. The data is relatively informative about the intrinsic persistence φ̃s but
has less to say about the exogenous autocorrelation ρφ̃. Even if the likelihood in Figure A.6a
is nearly constant in the neighborhood of the posterior mode, the likelihood function appear to
be well shaped when all the other parameters are not kept fixed. When plotting the likelihood
contours using only the real exchange rate in the measurement equation, we see that the data
is even less informative about ρφ̃ (see Figure A.6b). ρφ̃ can take on almost any value for small

values of φ̃s, and the likelihood function in this case suggest a corner solution of (φ̃s = 1, ρφ̃ = 0).

A.6. Measurement errors

In order to examine the sensitivity of our results to the choice of including measurement errors
in the estimation, we provide in Table A.1 the posterior mode estimates when varying the size
of the measurement errors. For ease of comparison we also include the baseline case. As a
first sensitivity check we set the variance of the measurement errors to 0.05 percent for all the
domestic variables and 0 for the foreign variables (i.e., less than half of what we are using in the
baseline case in the main text). From the table we see that this does not change the parameter
estimates by much. However, when treating the data as being measured almost perfectly (setting
the variance of the measurement errors to 0.01 percent for the domestic variables, see the last
column) certain parameters shift, sometimes substantially from an economic viewpoint. For
example, the price stickiness parameter increases from 0.82 to 0.92 and the substitution elasticity
between investment goods drops from 2.67 to 1.28. However, given that we know there are
measurement problems in the Swedish data we are using, it is not surprising that the estimates
change somewhat when no measurement errors are included in the estimation. Statistics Sweden
has made several alterations in how they collect their price statistics and we were for example
not able to remove all the seasonal variation in the GDP deflator. We therefore believe that a
small amount of measurement errors is reasonable to include in the estimation. It should also
be noted that it is the fundamental shocks in the model that explain the major part of the
variability in the data. In Figure A.7 we plot the actual data against the fluctuations generated
by the model without any measurement errors. As can be seen from the figure the two series



are very similar, so the measurement errors account only for a small fraction of the variability
in the data.

A.7. Unconditional moments

To get a better sense for the modified UIP condition’s compliance to the data we provide
in Table A.2 a posterior predictive analysis for the real exchange rate. The table shows the
unconditional moments for the real exchange rate in the data and in the two DSGE models (the
latter computed from simulated data in the model with the standard UIP condition and in the
model with the modified UIP condition, respectively). The table indicates that the specification
with the modified UIP condition captures the autocorrelation of the real exchange rate in the
actual data but overpredicts the volatility somewhat, while the specification with a standard
UIP underpredicts both the persistence and the volatility in the real exchange rate. However,
it should be noted that we are probably considering a too short sample period for making the
second moments a sufficiently informative statistic to truly evaluate the empirical coherence of
the models. This is particular the case if the transition from the fixed exchange rate regime to
the inflation targeting regime should be taken into account.

Appendix B. Misspecification analysis

B.1. Using a VAR with a DSGE prior

To describe the DSGE-VAR approach in some detail, let the VAR model with p lags be denoted

yt = Φ0 +Φwwt +Φ1yt−1 + ...+Φpyt−p + ut = Φ
0xt + ut, t = 1, ..., T, (B.1)

where yt contains the n stationary endogenous variables (I(1) variables enter in first differ-
ences), wt is a q-dimensional vector of exogenous variables, x0t = (1, w0t, y

0
t−1, ..., y

0
t−p), Φ

0 =
(Φ0,Φw,Φ1, ...,Φp) and ut ∼ N(0,Σu) are independent across time. Del Negro and Schorfheide
(2004) propose a prior for Φ and Σu that one may think of as centered around OLS estimates
based on a simulated data set of T ∗ observations from a DSGE model with parameter vector
θ. The posterior of the VAR coefficients may similarly be thought of as the result of applying a
Bayesian VAR to the combined data set of actual and artificial data. Del Negro and Schorfheide
(2004) avoid the simulation variability in the above mental sketch by replacing the simulated
cross moment matrices

P
yty

0
t,
P

xtx
0
t and

P
xty

0
t (which are the building blocks in the OLS

estimates) with their population counterparts T ∗Eθ(yty
0
t), T

∗Eθ(xtx
0
t) and T ∗Eθ(xty

0
t), respec-

tively. Eθ here denotes the expectation with respect to the DSGE model with parameter vector
θ. Formally, Del Negro and Schorfheide (2004) propose the following Normal-Inverted Wishart
prior for Φ and Σu, conditional on θ,

Σu|θ ∼ IW [λTΣ∗u(θ), λT − k]

vecΦ|Σu, θ ∼ N
©
vecΦ∗(θ),Σu ⊗ [λTEθ(xtx

0
t)]
−1ª

where the prior means of Φ and Σu are computed from the DSGE moments:

Φ∗(θ) = E−1θ (xtx
0
t)Eθ(xty

0
t)

Σ∗u(θ) = Eθ(y
0
tyt)−Eθ(ytx

0
t)E

−1
θ (xtx

0
t)Eθ(xty

0
t),



k = np+ q + 1 and λ = T ∗/T is the ratio of the number of artificial DSGE observations to the
number of observations in the actual data. This prior is proper if λ ≥ λmin = (k + n)/T .26

As λ decreases, the posterior estimates of the VAR coefficients approach the unrestricted
OLS estimates. It is important to understand that this does not mean that the corresponding
limiting marginal likelihood can be interpreted as some kind of measure of fit for an unrestricted
VAR. A marginal likelihood is always associated with a prior, which when λ = λmin is the prior
which uses just enough DSGE observations to make it proper. As the marginal likelihood is
the prior expectation of the likelihood function, it is clear that such a vague prior may be only
weakly connected to more traditional measures of fit based on OLS estimates.

The regime shift in the DSGE model’s monetary policy rule requires special attention in the
DSGE-VAR analysis. Given that the DSGE model allows all the reduced form parameters to
change as result of the regime shift, even if only a subset of the structural parameters change
(i.e., the conduct of monetary policy), the same must be true in the VAR model. We therefore
consider the following n-dimensional VAR with a potential break in all parameters at a known
time point t = T1

yt =

½
Φ01xt + εt, Cov(εt) = Σ1 for t ≤ T1
Φ02xt + εt, Cov(εt) = Σ2 for t > T1

. (B.2)

A completely unrestricted estimation this model ignores that (Φ1,Σ1) and (Φ2,Σ2) coincide
in all dimensions except those related to the monetary policy rule, and is therefore a nearly
impossible task, given the limited data available in the two subperiods. An elegant solution is to
use a Del Negro-Schorheide type of prior centered on the DSGE model with a regime change in
the monetary policy rule. If we assume that the two sets of parameters (Φ1,Σ1) and (Φ2,Σ2) are
a priori independent conditional on the parameters of the DSGE model, then the results in Del
Negro and Schorfheide (2004) are easily generalized to the extended model in (B.2). Although
it is straightforward to use different prior tightness in the two subperiods, we restrict λ to be
the same for all t. Note also that λmin = (k + n)/min(T1, T2), which may be rather large when
at least one of T1 or T2 are small.

B.2. VAR approximation error

The first step in the analysis is to determine how well a VAR/VECM with finite lag length can
approximate the DSGE model. To investigate this we compare the autocovariance function of
the DSGE-VAR and DSGE-VECM with λ = ∞ (i.e. where Φ = Φ∗(θ) and Σu = Σ∗u(θ)) to
the autocovariance function of the DSGE model with the modified UIP.27 We use the posterior
mode of the DSGE model as an estimate of θ. The results for a VAR/VECM with four lags
are displayed in Figure 8.28 The general impression from Figure A.8 is that the VAR(4) is
rather successful in approximating the autocovariances of the individual variables (diagonal
subgraphs), but is not able to capture several of the cross-covariances between the variables.

26This is a conjugate prior, so that the posterior of Φ and Σu also belongs to the Normal-Inverted Wishart
family, again conditional on θ. This makes it possible to obtain a closed form expression for the marginal posterior
of θ (see Del Negro and Schorfheide, 2004). Posterior sampling from the marginal posterior of θ may then be
performed in exactly the same way as in the pure DSGE model. The main difference being that the time-consuming
Kalman filtering of the state variables in the DSGE model are replaced by the less demanding computation of
the DSGE cross-moments (see Del Negro and Schorfheide, 2004 for details on how these moments are computed
by solving Lyapunov equations).
27The autocovariance function for the VECMs were computed from the MA representation of I(1) processes

(the so called Granger representation) using the explicit expressions in Hansen (2005). The MA coefficients were
truncated after 500 lags.
28 In order to make the subplots visible we report results for a subset of variables included in the estimation but

it is important to note that all variables are included in the VARs when computing the vector autocovariances.



Note that the VAR by construction gives identical autocovariances as the DSGE model up to lag
p, the lag length in the VAR. Experiments with a longer lag length in the VAR/VECM showed
an increasing accuracy in the approximation, but we continue to use p = 4 in the ensuing analysis
as a longer lag length is unsuitable for estimation given the relatively short data set. Turning to
the VECM(4) approximation in Figure A.8, it seems that the addition of cointegrating relations
to the VAR helps to improve the approximation to the DSGE model.

B.3. Assessing the role of the UIP condition

In order to examine the quantitative role of the modified UIP condition when the cross equation
restrictions have been optimally relaxed, we compare in Figure A.9 the cross correlation functions
in the DSGE-VECM model with the standard (solid) and modified UIP (dashed) condition for
the optimal lambda (bλ = 7). The figure also reports the standard deviation of the variables in
the model with the standard UIP condition (in the bottom of the subgraphs) and in the model
with the modified UIP condition (to the right of the subgraphs). From the figure we see that
there are some differences remaining between the two specifications also in the hybrid model. In
particular there are still differences between the cross correlations pertaining to the real exchange
rate, although the induced volatility in the real exchange rate is a lot more similar between the
two specifications of the VECM relative to the recorded difference between the structural DSGE
models (cf. Figure A.9 and Table A.2 in this Appendix). However, the marginal likelihood
comparison in Table 2 in the main paper suggest that the discrepancies in Figure A.9 are not
jointly very important.



 Table A.1: Posterior mode estimates under different sizes of measurement errors 
Parameter  Baseline* Variance (domestic 

measurement errors) = 0.05 
Variance (domestic 

measurement errors) = 0.01 
  posterior 

mode 
std dev. 

(Hessian) 
posterior 

mode 
std dev. 

(Hessian) 
posterior 

mode 
std dev. 

(Hessian) 

Calvo wages  wξ  0.773 0.264 0.736 0.265 0.677 0.194 
Calvo domestic prices dξ  0.815 0.322 0.870 0.298 0.921 0.214 
Calvo import cons. prices cm ,ξ  0.899 0.182 0.902 0.173 0.899 0.163 
Calvo import inv.  prices im ,ξ  0.943 0.174 0.941 0.169 0.939 0.160 
Calvo export prices  xξ  0.880 0.185 0.889 0.190 0.912 0.212 
Indexation wages wκ  0.320 0.489 0.289 0.465 0.362 0.471 
Indexation prices  κ  0.230 0.334 0.261 0.313 0.303 0.303 
Markup domestic  dλ  1.199 0.239 1.214 0.222 1.243 0.195 
Markup imported cons.  cm ,λ  1.580 0.057 1.611 0.041 1.291 0.068 
Markup.imported invest.  im ,λ 1.150 0.276 1.165 0.238 1.213 0.153 
Investment adj. cost  ''~S  8.811 1.326 8.761 1.334 7.808 1.354 
Habit formation  b  0.638 0.264 0.644 0.254 0.686 0.265 
Subst. elasticity invest.  iη  2.672 0.168 2.389 0.136 1.280 0.143 
Subst. elasticity foreign fη  1.491 0.271 1.492 0.273 1.547 0.310 
Technology growth  zμ  1.005 0.047 1.005 0.047 1.005 0.048 
Risk premium  φ~  0.042 0.478 0.042 0.468 0.057 0.445 
UIP modification 

sφ
~  0.607 0.236 0.612 0.238 0.621 0.292 

Unit root tech. shock persistence 
zμρ  0.857 0.504 0.866 0.398 0.741 0.087 

Stationary tech. shock persistence ερ  0.901 0.556 0.877 0.385 0.781 0.202 
Invest. spec. tech shock persistence Υρ  0.749 0.502 0.847 0.505 0.822 0.358 
Asymmetric tech. shock persistence *~zρ  0.962 0.257 0.938 0.288 0.775 0.081 
Consumption pref. shock persistence 

cζ
ρ  0.688 0.672 0.800 0.787 0.731 0.729 

Labour supply shock persistence 
hζ

ρ  0.266 0.340 0.259 0.338 0.518 0.197 
Risk premium shock persistence φρ ~  0.656 0.444 0.624 0.424 0.641 0.507 

Unit root tech. shock standard deviation zσ  0.133 0.201 0.128 0.200 0.188 0.197 
Stationary tech. shock standard deviation εσ  0.681 0.124 0.838 0.091 1.065 0.086 
Invest. spec. tech. shock standard deviation Υσ  0.360 0.195 0.318 0.162 0.375 0.143 
Asymmetric tech. shock standard deviation  *~zσ  0.188 0.144 0.188 0.144 0.204 0.160 
Consumption pref. shock standard deviation  

cζ
σ  0.243 0.184 0.250 0.169 0.236 0.157 

Labour supply shock standard deviation  
hζσ  0.380 0.102 0.385 0.098 0.348 0.107 

Risk premium shock standard deviation  φσ ~  0.790 0.254 0.904 0.245 0.965 0.276 
Domestic markup shock standard deviation  λσ  0.800 0.104 0.799 0.099 0.853 0.108 
Imp. cons. markup shock standard deviation 

cm ,λσ 1.110 0.103 1.181 0.100 1.010 0.098 
Imp. invest. markup shock standard deviation im ,λσ  1.147 0.109 1.127 0.105 0.959 0.095 
Export markup shock standard deviation   

xλ
σ  1.037 0.133 1.060 0.130 1.042 0.143 

Interest rate smoothing, pre-infl. targeting 1,Rρ  0.883 0.231 0.882 0.229 0.889 0.238 
Inflation response, pre-infl. targeting  1,πr  1.694 0.142 1.683 0.145 1.697 0.141 
Diff. infl response, pre-infl. targeting  1,πΔr  0.159 0.054 0.145 0.052 0.116 0.051 
Real exch. rate response, pre-infl. targeting  1,xr  0.012 0.024 0.010 0.024 0.038 0.030 
Output response, pre-infl. targeting  1,yr  0.134 0.046 0.145 0.044 0.138 0.044 
Diff. output response, pre-infl. targeting  1,yrΔ  0.111 0.044 0.103 0.040 0.052 0.022 
Monetary policy shock, pre-infl. targeting  1,Rσ  0.386 0.150 0.369 0.154 0.386 0.149 
Inflation target shock, pre-infl. targeting  1,cπ

σ 0.267 0.299 0.302 0.275 0.350 0.265 

Interest rate smoothing 2,Rρ  0.865 0.185 0.855 0.173 0.844 0.155 
Inflation response  2,πr  1.738 0.129 1.732 0.130 1.718 0.130 
Diff. infl response  2,πΔr  0.128 0.027 0.129 0.029 0.126 0.024 

Real exch. rate response  2,xr  -0.026 0.016 -0.026 0.014 -0.037 0.013 

Output response  2,yr  0.096 0.039 0.092 0.040 0.088 0.043 
Diff. output response  2,yrΔ  0.101 0.030 0.083 0.031 0.096 0.027 
Monetary policy shock  2,Rσ  0.101 0.117 0.101 0.130 0.089 0.117 
Inflation target shock  

2,cπ
σ 0.080 0.505 0.073 0.505 0.070 0.453 

 

*Note: The variance of the measurement errors in the baseline estimation is set to 0 for the foreign variables and the domestic 
interest rate, 0.1 percent for the real wage, consumption and output, and 0.2 percent for all the other variables. 
 



Table A.2: Second moments for the real exchange rate, data and model 

 Data (86Q1-04Q4) Model standard UIP Model modified UIP 

Standard deviation 9.28 5.92 (3.79-9.52) 14.54 (7.34-27.79) 
Autocorrelation 0.97 0.85 (0.67-0.94) 0.97 (0.93-0.99) 

 

Note: For the model the median and 95 percent uncertainty intervals (in parenthesis) are reported from 
simulating the two model specifications 10.000 times with 76 periods each using different draws from the 
posterior distribution every time.  



Figure A.1a: Prior and posterior distributions, friction parameters
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Figure A.1b: Prior and posterior distributions, shock parameters
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Figure A.1c: Prior and posterior distributions, policy parameters
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Figure A.2a: Plots of the raw Metropolis draws, friction parameters
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Figure A.2b: Plots of the raw Metropolis draws, shock parameters
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Figure A.2c: Plots of the raw Metropolis draws, policy parameters
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Figure A.3a: CUSUM plots of the Metropolis draws, friction parameters
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Figure A.3b: CUSUM plots of the Metropolis draws, shock parameters
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Figure A.3c: CUSUM plots of the Metropolis draws, policy parameters
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Figure A.4: Sequential marginal likelihoods
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Figure A.5: Multivariate ANOVA
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Figure A.6a: Log likelihood contours in the {eφs, ρφ}-space, using all observable variables



Figure A.6b: Log likelihood contours in the {eφs, ρφ}-space, only using the real exchange rate



Figure A.7: Data (solid) and two-sided Kalman filtered estimates (dashed)
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Figure A.8: Vector autocovariance functions in the DSGE model with the modified UIP condition (solid), DSGE-VAR
λ =∞ (dotted) and DSGE-VECM λ =∞ (dashed)
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Figure A.9: Cross-correlation functions (CCF) from the DSGE-VECM λ=bλ with the UIP (solid) and the modified UIP
(dashed) condition. The subgraphs below the diagonal display the cross-correlation between the column variable and the lag
of the row variable. The opposite order applies to the upper diagonal graphs. The CCFs are computed at the posterior mode
estimates of the parameters within each model. The numbers in the bottom of the graphs are the standard deviations of the
respective variable in UIP case. The corresponding standard deviations for the model with the modified UIP condition are
displayed to the right of the subgraphs.
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