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Abstract

We use TVP models and real-time data to describe the evolution of the leading prop-
erties of the yield spread for output growth in five European economies and in the US
over the last decades and until the third quarter of 2010. We evaluate the predictive
performance of benchmark term-structure models and identify structural breaks in the
marginal processes of term spreads and government bond yields to shed light on the
dynamic characteristics of the yield curve. Econometric analysis shows that: (i) the pre-
dictive content of the term spread is not always significant over time and across countries;
(ii) the spread significantly contributes to the forecast performance of simple growth re-
gressions in Europe, but not in the US in recent years; (iii) the variance of the random
shocks to the term spreads tends to fall in all countries. This decline is accompanied by
vanishing leading properties from the mid-1990s. Such properties reappear after 2008.
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1 Introduction

The slope of the term structure of interest rates is often cited as a useful leading economic
indicatorﬂ Conventional wisdom maintains that a negative slope is able to forecast business
cycle downturns and recessions a few quarters ahead in the US and in other OECD countries.

The theoretical economic literature has proposed several explanations for the predictive
power of the term spread — i.e., the difference between a long-term nominal interest rate
and a short-term nominal rateﬂ Its practical relevance for policy decisions is controversial,

though, and even recent empirical literature calls into question its usefulness for forecasting.

[Estrella, Rodrigues, and Schich (2003)| use econometric techniques for break testing to study

the stability properties of the relationship between the slope of the yield curve and subsequent
real activity. They consider continuous models — to predict economic growth — and binary
models — to predict recessions — for Germany and the US and document that the marginal

predictive content of the spread for US output growth recently disappeared. Similar evidence

is found in [Dotsey (1998)| for the United States. |Giacomini and Rossi (2006)| use new tests

for forecast breakdown and a variety of in-sample and out-of-sample evaluation procedures to
show the presence of structural breaks in the relationship between the slope of the yield curve
and the US real output growth. They find forecast breakdowns during the Burns-Miller and
Volcker monetary policy regimes and argue that the yield curve was a more reliable leading
indicator during the early part of the Greenspan eraE|

Some of these authors point out that the features of the relationship between the spread
and economic activity may change following major economic shocks. In their attempt to
explain the breakdowns, other researchers stress the role of globalization and the main central
banks, which successfully achieved remarkable degrees of price stability, fostered sustained

growth, and induced weaker and less-frequent shifts in the term spread for prolonged periods

of time. [Kucko and Chinn (2009)| re-examine the evidence in the United States and some

"For example, see [Stock and Watson (1989)| and |(1992)|
2The term spread is also known as the yield spread, or the interest rate spread.

}Wright (2006) fonsiders a number of probit models using the yield curve to forecast recessions in the
US and argues that not only the level but also the shape of the yield curve should be used to gain useful

information about the likely odds of a recession.




European countries. They find that the predictive power of the yield curve deteriorated over
the years and claim that there are reasons to believe that European-country models perform

better than non-European-country models with recent data. In a survey of the existing

literature|Wheelock and Wohar (2009)|document that the term spread predicts output growth

and recessions up to one year in advance, but its usefulness varies across countries and over
time. However, while the ability of the spread to forecast economic growth diminished lately,
the slope of the term structure has remained a reliable predictor of recessions.

The latest international economic events, including the recent US financial crisis and
global recession, may have affected the predictive power of the yield curve and motivate
a new cross-country analysis on its leading propertiesﬁ We adopt a systematic approach
to estimate the time-variation in the predictive content of the term spread for future GDP
growth, to assess its stability, and to examine its relative forecasting performance in six
major OECD countries. The period of analysis is country-specific: generally, it is 1960-2010
for Germany, 1980-2010 for Spain and Italy, 1970-2010 for France, 1978-2010 for the UK,
and 1964-2010 for the US. The contribution to the empirical literature is threefold. First,
while most empirical studies either assume the relationship between future GDP growth and
the interest rate spread to be constant or just focus on its stability properties by testing
for structural breaks, we model and estimate its evolution through time-varying-parameter
(TV P) models and real-time data, allowing for smooth transitions at each point in time.
Second, using a real-time dataset, we study the out-of sample forecast performance of a set
of simple, widely used, benchmark GDP growth regressions including the term spread as
an explanatory variable and compare it with that of autoregressive models. To shed novel
light on the dynamic characteristics of the yield curve, we estimate autoregressive models for
long-term interest rates and yield spreads and test for breaks in the model parameters and

innovation variance using a battery of state-of-the-art structural stability tests. Third, we

In June of 2004 the Fed started tightening its policy. They raised the Federal Funds Target from 1% to
5.25% at seventeen consecutive meetings. Short rates followed the Target and moved in the same direction.
However, long maturity rates fell. In a 2005 testimony at the Congress, Alan Greenspan defined the strange
behavior of the spread between long and short rates a conundrum. This US-specific phenomenon further
motivates the present piece of research.



document the reappearance of the predictive content of the spread following the events of
2007 and 2008 that led to the global economic downturn.

We derive the following results. (i) The term spread is not a reliable predictor of output
growth. Its predictive content is significant in the early parts of our country-specific samples,
then vanishes in later periods. Its leading properties, weak or non-existent between the mid-
1990s and 2008, significantly reappear after then. (ii) The out-of-sample forecast accuracy
of GDP growth regressions is time-varying. It generally improves over time until 2008, after
which we observe a sharp, synchronized, deterioration in all countries. Benchmark term-
structure models exhibit a better forecast accuracy than autoregressive models in Europe,
unlike in the US in recent years. (iii) The variance of the random shocks to the term spreads
falls in all countries, consistently with the facts of the Great Moderation. This decreasing

variability is accompanied by weaker and declining leading properties until 2008.

2 The Term Spread as a Leading Economic Indicator

According to the preferred habitat theory, investors with heterogeneous investment horizons
require a premium to buy bonds with maturities outside their preferred habitat. If short-
term investors are prevalent in the fixed-income markets, long-term rates tend to be bigger
than short-term rates and the yield curve naturally slopes upwards due to the term premia.
Similar implications can be found in the liquidity premium theory, according to which there
exists a term premium that increases with maturityE]

The most common explanation of why the term spread should predict output growth is
related to countercyclical monetary policy. If the central bank lowers the policy interest rate,
nominal and real long- and short-term rates tend to decline. Long-term rates tend to fall less
than short-term rates because the monetary expansion raises long-term inflation expectations
and the monetary authority is expected to switch to a contractionary stance in the future

to respond to potential increases in inflation. The yield curve gets steeper and, since real

In the liquidity premium theory the interest rate on a long-term bond equals an average of short-term
interest rates expected to occur over the life of the long-term bond plus a premium that depends on the
supply and demand conditions for that bond.



interest rates will remain low for a while, output growth is likely to be above averageﬁ

[Estrella (2005)| formally derives the link between the spread and economic activity in a

small dynamic rational expectations model containing a Phillips curve, a dynamic IS curve,
the Fisher equation, the expectations hypothesis, and a monetary policy rulem In this frame-
work the positive link between the yield spread and expected future output is not structural
but influenced by the monetary policy regime. It is stronger when the monetary policy re-
sponse to output is small, weaker or nonexistent when the response is large. Changes in the
leading properties should then mirror changes in the monetary policy stance.

The consumption capital asset pricing model (CCAPM) implies a positive relationship
between the slope of the real yield curve and future real consumption growth. In real business
cycle models, based on the same first-order condition as the CCAPM, expected positive pro-
ductivity shocks increase future output. As agents substitute current for future consumption,

future real interest rates go up and the real yield curve gets steeperﬁ

3 Predicting Cumulative GDP Growth Using the Term Spread

As customary in this strand of empirical literature, the focus is on a simple benchmark

term-structure model for predicting cumulative GDP growthﬂ

Gti+k = @+ sy + vy, (1)
and on its two variants,
Gtrk = @+ B8t +VGt—kt + Vi (2)
and
Gtk = 0+ BS4_1 + VGi—kt + Vi, (3)

b According to this story, the predictive content of the term spread is a correlation between endogenous
variables, whose (co)movements are affected by monetary policy actions.

"The expectations hypothesis of the term structure states that the interest rate on a long-term bond equals
an average of the short-term interest rates expected to occur over the life of the long-term bond.

8 These models have implications for the real interest rates. The role of inflation expectations is then crucial,
since the term structure is expressed in nominal terms.

?See also [Estrella and Hardouvelis (1991)| and [Estrella and Mishkin (1997)|




where g 141 = %ln <YtTJ;’“) is cumulative growth between time ¢ and t + k, Y; is real GDP,

St = 110yr,t — 13m,¢ 1S the term spread, 710y,¢ is an annualized ten-year government bond yield,
and 73, ¢ is an annualized three-month money market or interbank ratem The coefficient as-
sociated with s;, 8, and the R? of a model incorporate the basic information on the predictive
content of the spread for output growth. With a positive 3, an inversion of the term structure
would predict a real downturn &k (or k + 1) quarters in advance. A high informativeness —

i.e., a high R? — would empirically corroborate this intuition.

4 The Econometric Methodologies

Previous studies document that instability is a feature of the leading properties of the term
spreadE Ignoring it may have negative consequences on inference and forecasting. Two are
the main approaches to instability and change-point modeling: (i) a predominant strategy,
based on the estimation of models with a small number of change-points, usually one or two;
(ii) a more infrequent solution, based on the estimation of 7'V P models, where the parameters
change with each new observation as random walks or stationary autoregressive processes.
We first assume that the model coefficients in (1) — (3) are time-varying. A compelling
critique of this in-sample estimation approach is that the models are estimated using data that
were not available at the time of the observation(s) being fitted. To circumvent this problem,
we also propose a real-time analysis. Recursive OLS regressions on subsequent vintages
of data describe the features of the long-run convergence of the coefficient estimates over
the sample. Moving OLS regressions, based on a fixed-length moving window of ten years,
capture the short-run variation and the stability characteristics of the leading properties. At
a second stage, we run a battery of state-of-the art tests for breaks at unknown dates in
the marginal processes of government bond yields and term spreads. We use classical and
Bayesian tests for one or multiple breaks in the AR parameters and/or in the innovation

variance of simple autoregressive models describing the time evolution of these variables.

Y0This expression for cumulative growth is appropriate with quarterly data. k varies between 1 and 4.
"'For example, [Benati and Goodhart (2007)}




4.1 TVP Models for Cumulative GDP Growth

The starting point is models (1) — (3), for whose coefficients we assume specific time-varying
properties. In the state-space specifications used for estimation, g;;+ and s; are the ob-
servable variables included in the measurement equations, the coefficients 5 and « are the
unobservable state variables, assumed to be time-varying and following the transition equa-
tions that incorporate the characteristics of their time evolutionE Such evolution may be
the result of slow changes in the process or some form of nonlinearity in the data. TV P
models change their parameters automatically and optimally to reflect the variations in the
nature of the time seriesH The specifications of our TV P models — all reported in Appendix
B — are conventional and assume either random walks or stationary AR (1) processes as state

equations. We use an efficient algorithm, which allows for the optimal, robust, and unbiased

estimation of dynamic regression models as discussed in [Young et al. (2007)}

4.2 Breakpoint Tests on Interest Rate Dynamics

We estimate univariate AR(K) models for the term spread or government bond yield,

st =p+ 5K s+ e, (S1)

where ¢; is a serially uncorrelated random error term and p is the intercept. We select the lag
order, K, using the Schwarz Information Criterion (SIC). Then we estimate structural breaks

at unknown dates in the model parameters and/or the innovation variance. The classical tests

for breaks are based on [Hansen (2000)| and [Qu and Perron (2007)| [Levin and Piger (2004 )|

are the reference for the Bayesian comparison of alternative breaks models. Using
[Perron (2007), we also test for structural breaks in a system including equations (1) and (S1).

12 A TV P model can be interpreted as a model with T — 1 breaks in a sample of size T. With a small number
of structural breaks, the magnitude of the change in the coefficients after a break is not typically restricted.
The implicit assumption is that, after the last estimated break, there will be no more. In contrast, in TV P
models, there is always a probability equal to one of a break in the next new observation. The size of the
break is limited by the assumption that the coefficients evolve according to a specified stochastic process.

13The TV P methodology is robust to the uncertainty concerning the specific form of time-variation present
in the data and is generally capable of successfully tracking processes subject to structural breaks.



5 Empirical Results

What follows is a description of the main findings. Detailed tables and select figures are

commented here and reported at the end of the paper.

5.1 The Data

The sample includes six OECD countries: Germany, Spain, France, Italy (in the Euro area),
the UK, and the US. We consider annualized ten-year government bond yields (long-term
interest rates) and annualized three-month money market rates or interbank offer rates (short-
term rates). The real GDP series are expressed in millions of national currency (volume
estimates, OECD reference year). The data on real GDP and the interest rates are taken
from the OECD database. The source of real-time data on GDP in Germany, Spain, France,
and Italy is the OECD Real-Time Data and Revisions Database. The UK real-time data
are downloaded from the Bank of England GDP Real-Time Database. The US real-time
series are collected from the Philadelphia Fed’s Real-Time Data Set for Macroeconomists
(RTDSM). Full details on the samples and, in the case of real-time data, vintages are reported
in Appendix A, where we also describe some minor issues in terms of missing observations.
Unless noted otherwise, all series are quarterly and seasonally adjusted. The vintages and

observations in the real-time dataset are also quarterly.

5.2 Benchmark OLS Estimates

Table 1 shows the OLS estimates of models (1) — (3). Depending on the time horizon over
which cumulative growth is computed, the adjusted samples range from 1980.1 (Spain and
Italy), 1960.1 (Germany), 1970.1 (France), 1978.1 (UK), or 1964.3 (USA), to 2009.2—2010.2{13-]

What emerges is a mixed picture where conventional wisdom is confirmed only to some
extent. In Germany, France, the UK, and the USA the slope coefficients associated with the

term spread are significant and positive in all models and at all forecast horizons. The size of

' Adjacent growth figures are calculated from overlapping data points, which likely cause problems of serial
correlation in the error terms of the models. Newey-West heteroskedasticity and serial correlation robust
standard errors are used in the regression analysis.



the estimates is large, generally well above 0.5, and the corresponding levels of informativeness
are usually high, with few exceptions at the shorter horizons. No significant predictive content
can be found in Spain and Italy. The impression is that the relationship between the spread
and economic growth is dissimilar across countries, or at least not consistently significant.
However, the standard OLS approach is likely not to capture some important features of the
data. More sophisticated techniques would allow us to better describe the stability properties

of the model parameters and the time-variation in the relationship under investigation.

5.3 Time-Variation in GDP Growth Regressions

In this section we describe the time-varying properties of § in models (1) — (3). We esti-
mate TV P models, then perform a real-time analysis and assess the out-of-sample forecast

performance of the benchmark term-structure equations relative to autoregressive models.

5.3.1 TVP Models

Figures la-c show select time-varying estimates of 5 in model (I)E Alternative estimates
from the other models, where we allow v to either vary with time or stay constant, provide
similar evidence[l| AR (1) or random-walk (RW) variation in the yield-spread coefficient is
chosen in each case using the R? as a criterion for model selection.

In Germany the point estimates of 5 — generally positive for all values of k£ — slope
downward between 1960 and 2002, then move upwards. The two-standard-error confidence
bands cover zero almost always with k = 3,4, except for the period following 2006, when
becomes statistically positive. With k = 1,2 § is statistically positive between 1960 and 1985,
then becomes insignificant. The Bs exhibit more variation in the other European countries,
but the associated confidence bands usually cover zero. A downward sloping term-spread
coefficient is estimated in the US, significantly positive at the beginning of the sample (from
1965), statistically negligible at the end. The statistical disappearance of the US leading

properties can be dated in the second half of the 1980s, at the end of the Volcker era and

15SQystems 1.a-b in Appendix B.
'6The intercept term, o, is kept constant in all models.



the period of high inflation post oil shocksm The UK point estimates of 5 sharply increase
in 2004/2005 and reach a significantly positive peak around 2008/2009. The US term-spread
coefficient picks up a bit around 2009, too, but remains statistically insigniﬁcant@

In all cases, the TV P models exhibit a better in-sample performance than their OLS

counterparts, as indicated by the bigger coefficients of determination.

5.3.2 Real-Time Analysis

We recursively estimate models (1) — (3) on the vintages of the real-time datasets. First,
we run recursive regressions by estimating the models over the full samples of each vintage.
The window size increases by one quarter at each step, as we switch from a vintage to the
one that follows. In this way we capture the long-run evolution of 5 as GDP revisions are
incorporated in the set of dataﬁ Then, we run mowving regressions with a fixed window size
on the last forty quarters of each vintage. The attempt is to exclude remote information from
the estimates and describe the short-run time-variation incorporated in the coefficients 7]
Figures 2a-b show the moving regressions estimated on model (1). In France and Italy,
the slope coefficient are stable and, most of the times, significantly positive for a few years
after 1999. The statistical significance of the S parameters vanishes in these countries in
2004. The coefficients of determination, fairly high in the previous quarters, fall to almost
zero simultaneously, remain low until 2007/2008, then rapidly increase and accompany a
significantly positive variation in the s during the global recession period. The German
leading properties are non-significant until 2009, then quickly become statistically positive.
In Spain they are statistically positive between 2001 and 2004 and then again from 2009. In

the UK and, particularly, the US, we observe a steady decline of the predictive content over

"7V P models often produce large standard errors and confidence bands. Most likely, we fail to reject the
null of statistical non-significance too often — i.e., we have low power. The spread might have had significant
predictive content for longer periods in all countries and, in the US, the disappearance of the leading properties
could be probably placed at a later date.

8 Four of the countries in the sample out of six have been in the Euro area and have had a common monetary
policy and similar interest rates since 1999. Their currencies were already closely tied from the mid-1990s.
However, the TV P point estimates of 8 do not reveal the existence of similar evolutions in the last 15 years.

19The recursive estimates are not reported here but can be found online.

20Farlier work in this literature is only based on the most recent vintage of data.


http://sites.google.com/site/pierangelodepace/DePace2011-GGPYS-DataandResults.zip

time. The disappearance of the statistical significance of 8 can be dated in 2002 in the UK
and in 1998 in the US. A slow fall of the US informativeness starts around 1984/1985. In
both countries the predictive content swiftly picks up in 2008, as indicated by the increasing
estimates of 3 and the corresponding R2s. Vanishing, weak, or non-existent leading properties
are estimated in all countries for most of the ten years between 1998 and 2008. A significant
inversion of this trend occurs during the last financial crisis and world recession.

Policy makers are often interested in assessing the difference between the indications they
obtain using the available information at the time of their decisions and the indications they
would get ex-post, if they knew future information and how past data will be revised. This
issue is relevant in a forecasting framework. An empirical investigation on the full real-time
dataset should be conducted if the goal is to uncover the evolution, subject to error, of a
forecasting relationship as new GDP figures get released and old vintages revised. As the
last vintage of data is thought to be the series that measures the level of economic activity
with least error, the final vintage can be used to verify and, possibly, compare economic
relationships, also out of sample. The two approaches thus serve different purposes.

To highlight the discrepancies between the real-time analysis and a standard investigation
on the latest data revision, recursive and moving regressions are estimated on the last vintage
of each real-time dataset. Such estimates, also reported in Figures 2a-b, are pointwise different
from their counterparts based on the full real-time dataset@ Using real-time data leads to
a concrete risk of misestimating the predictive content of the spread. The difference between
the Bs (or R2s) may occasionally get substantial, determine incorrect analyses, and lead to
imprecise policy indications. There is no pattern in the sign of the divergence. However, since

the respective confidence bands always overlap, such difference is statistically insignificant.

2L GDP series are continuously revised, often significantly. Given that we cannot even measure GDP without
errors, we cannot expect real-time forecasts of real economic activity to be precise.

10



Out-of-Sample Forecast Performance of GDP Growth Regressions

We benchmark (1) — (3) in terms of forecast performance against the autoregressive models

Gtitrk = O+ VGt—kt + Vi (4)
and
3
Gtk = o+ Z’ngt—k—j,t—j + vt (5)
=0

We dynamically and statically forecast the last eight quarters of each vintage in the real-
time dataset@ The root mean squared forecast error (RMSFE) is our metric to compare
the abilities of each model to predict growth. Figures 3a-b compare the evolutions of the
RMSFEs, recursively estimated from the five models[”|

The forecast errors in France and Italy are stable and approximately of the same size
from 1999 to 2008, with a contemporaneous, although mild and temporary, deterioration
between 2003 and 2004. The forecast accuracy improves a little in both countries between
2004 and 2008. The errors are more erratic in Germany between 2001 and 2009, but the
average magnitude remains similar to that of France and Italy, with peaks in 2002, 2004, and
2008. The Spanish RM SF Es peak at the end of 2002 and then decline until 2008. The UK
forecasts become less accurate around 1992 (the currency crisis the led the pound sterling out
of the European Monetary System), 1997, and 2001. In the US, the accuracy deteriorates

in the second half of the 1970s and for a few years at the beginning of the 1980s and 1990s.

The first two US deteriorations look similar to those documented by [Giacomini and Rossi|

(2006 )| for the Burns-Miller and Volcker periods. A smaller deterioration occurs in 2001 under
Greenspan. The breakdowns in the US forecast accuracy are coincident with recessions. In

all countries, the RM SF Es become smaller over time until 2008, after which we observe a

22Dynamic forecasting performs a multi-step ahead forecast of the dependent variable. It requires that the
data for the exogenous variables be available for every observation in the forecast sample and that the values
for any lagged dependent variables be observed at the start of the forecast sample. Static forecasting performs
a series of one-step ahead forecasts of the dependent variable. It requires that the data for both the exogenous
and any lagged endogenous variables be observed for every observation in the forecast sample.

23 = 4 in the figures, but we find similar patterns with k = 1, 2, and 3 and a forecast sample of one quarter.

11



sharp, synchronized, worsening of the forecast accuracy of all models.

To statistically compare the term-structure models to models (4) and (5) in terms of out-
of-sample forecast performance, we run modified Diebold-Mariano (DM) tests for equality
of forecast accuracy on the static forecastsP] We would like to test the merits of all the
models, but a limitation of this test is that it can be only applied to pairs of non-nested

models. Unfortunately, some pairs contain models that are nested@ The test statistic of

[Diebold and Mariano (1995) has a nonstandard distribution under the null hypothesis of

equal forecast accuracy if the models are nested, as the models are identical under the null@
Thus, not even bootstrap p-values would allow us to make such a comparisonm

Tables 2a-b report modified DM statistics for non-nested models with forecast samples
of one quarter and eight quarters, respectively, on each Vintage@ We run the tests on the
full samples and on country-specific subsamples@ With a forecast sample of one quarter,
the term-structure models perform as well as the alternative models, occasionally better, in
all European countries. In the US, the autoregressive models perform better over the second
subsample, worse in the first subsample, but we never reject the null of equal accuracy in
the full sample. With a forecast sample of eight quarters, the term-structure models perform
better at forecasting GDP growth than the autoregressive models in all European countries
in their specific first subsamples and full samples. In the US, the term-structure models do

a better job in the first period, just a marginally better job over the full sample, but are

2Harvey, Leybourne, and Newbold (1997)| propose a modified DM statistic based on an unbiased estimator
of the asymptotic (long-run) variance of VTd in the DM statistic, where T is the sample size and d is the
sample average of the loss differential (in this work the difference of the RMSFEs) the test is based on.
They show that, with small samples, a Student’s ¢ distribution is more appropriate than a standard normal
distribution for the computation of the critical values.

Z"Model (1) is nested in (2); model (4) is nested in (2), (3), and (5).

*%IClark and McCracken (2001)]
*TFaust and Wright (2009)]

28 A complication of the DM test (and its modified version) regards the estimation of the asymptotic variance
of V/Td. The standard practice is to estimate this variance by taking a weighted sum of the available sample
autocovariances. Optimal k-step ahead forecast errors are at most (k — 1)-dependent — i.e., autocorrelated
up to the (k — 1)-th order. (k — 1)-dependence implies that only (k — 1) sample autocovariances should be
used. Since the forecast horizon of our models is 1, 2, 3, or 4 quarters, we use the sample variance and
autocovariances up to the third order. In the event that a negative estimate arises, we treat it as zero and
automatically reject the null hypothesis of equal forecast accuracy. See[Diebold and Mariano (1995)|for details.

29The breaks for the determination of the subsamples are estimated in the middle 70% of each full sample
using a recursive algorithm that maximizes the absolute average difference of the average RMSF Es of the
five models over two subsequent subsamples, for each value of k.

12



outperformed by the autoregressive models in the second. At least in recent years, the US

results are consistent with the conclusions in [Faust and Wright (2009), Using a new dataset

of vintage data consisting of a large number of variables, as observed at the time of each
Greenbook forecast since 1979, they show that a univariate AR (4) model better forecasts
US GDP growth than alternative specifications including other explanatory variables. Such
a finding is not externally valid for the other countries in the sample, for which the term

spread provides a significant contribution to the forecast performance.

5.4 Structural Breaks Evidence for Term Spreads and Bond Yields

Tables 3a-b show breaks in the parameters of (S1) based on [Hansen (2000)\°’| Tables 4a-b

and Ha-b describe the outcomes of the [Qu and Perron (2007)| tests on (S1) and on a system

of two equations including (1) and (S l)ﬂ Using Bayesian methods, Table 6 compares the
marginal log-likelihoods of model (S1) in each country with two of its one-break Versions@

Despite some heterogeneity in the estimated breaks, most shifts in the government bond
yields occur at the following dates: 1970/1971 and 1994.4 (Germany); 1995.1 and 2005
(Spain); 1978.1 and 1994.4 (France), 1996/1997 and end of 2000 (Italy); 1994.2 and 2004 /2005
(UK); 1979.3 and 1991.1 (USA). In the case of the interest rate spreads — which is what we
should pay more attention to, since it is the variable we employ to predict output growth
— the breaks are mainly clustered around: 1969.2 and 1981.3 (Germany); 1994 and 2005
(Spain); 1978 and beginning of 1995 (France), 2000 and 2005 (Italy); 1993/1994 and 2005
(UK); end of 1971, end of 1982, and 1984.4 (USA) |

The breaks are similar within each country, independently of whether we assume shifts
in the innovation variance, in the coefficients, or both. Consistently with the facts of the

Great Moderation, we observe a decline in the volatility of reduced-form random shocks in

30The unreported p-values are derived as in [Andrews (1993)| and [Hansen (2000)] We also compute
heteroskedasticity-robust bootstrap p-values based on 100,000 bootstrap replications. In this exercise,
drews (1993)[s asymptotic critical values provide similar inference as the bootstrap.

°*We test the null of no breaks against the alternatives of one break and, when appropriate, two breaks.

328preads and bond yields are better fitted by models with a break in the innovation variance than by
models with a break in both the innovation variance and the coefficients. See Appendix C for further details.

33 Unreported breakpoint Chow tests, used for further validation, signal that most of these shifts (taken as
exogenous) are significant at conventional levels.
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the term-spread marginal processes. The ratios between innovation variances and variances
of the spreads exhibit a similar evolution. This drop is accompanied by a generally weaker

link between the term spread and the real growth rate from the mid-1990s to 2008@

6 Conclusions

In this paper we estimate the time-variation in the predictive content of the term spread
for future GDP growth in six major OECD countries and study the forecasting properties
of a set of simple benchmark GDP growth regressions that include the term spread as an
explanatory variable. To shed light on the dynamic characteristics of the yield curve, we
estimate autoregressive models for long-term interest rates and yield spreads and test for
breaks in the model parameters and innovation variance with a battery of state-of-the-art
structural stability tests. Our investigation is based on an extensive use of TV P models,
real-time datasets, classical and Bayesian tests for structural breaks at unknown dates.

We argue that the spread is not a reliable predictor of output growth. To some extent,
its predictive content is statistically and economically significant in the early parts of our
country-specific samples, especially in the US and UK. It vanishes in later periods, but
reappears in all countries after 2008, during the global downturn. Such leading properties
are characterized by time-variation and instability. The real-time analysis shows that the
out-of-sample forecast accuracy of simple benchmark GDP growth models is markedly time-
varying, but improves over time until 2008, then deteriorates with the financial crisis and
world recession. The benchmark term-structure models exhibit a better forecast accuracy
than the alternative atheoretical autoregressive models in Europe, but the term spread does
not significantly contribute to forecasting growth in the US in recent years. Finally, the
structural breaks evidence indicates that the variance of the random shocks to the spreads is
declining, consistently with the facts of the Great Moderation. This decreased variability is

accompanied by weaker leading properties for approximately ten years until 2008.

31This pattern of decreased volatility of the random shocks is less clear, or at least not as pronounced, in
the case of government bond yields.
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8 Technical Appendix

We provide details on the dataset and on the estimation of TV P and Bayesian models.

Further information is given in the Companion Tecnhical Appendix.

Appendix A. Data Description

The first table describes the samples for each variable in each country. The second table

provides information on the GDP real-time dataset. Data are quarterly, as well as vintages
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and observations in the real-time dataset. Interest rates are never revised.

Short-Term Interest Rate

Long-Term Interest Rate

Term Spread

Real GDP

Germany 1960.1-2010.3 1956.3-2010.3 1960.1-2010.3  1960.1-2010.3
Spain 1977.1-2010.3 1980.1-2010.3 1980.1-2010.3  1960.1-2010.3
France 1970.1-2010.3 1960.1-2010.3 1970.1-2010.3  1949.1-2010.2
Italy 1978.4-2010.3 1980.1-2010.3 1980.1-2010.3  1960.1-2010.3
UK 1978.1-2010.3 1960.1-2010.3 1978.1-2010.3  1955.1-2010.3
USA 1964.3-2010.3 1953.2-2010.3 1964.3-2010.3  1947.1-2010.3

Real-Time Data for Real GDP

Vintages

Observations

Germany

Spain

France

Italy

UK

USA

1999.1-2010.3

1999.1-2010.3

1999.1-2010.3

1999.1-2010.3

1990.1-2010.2

1965.4-2010.3

1991.1-2010.2

1980.1-2010.2

1960.1-2010.2

1970.1-2010.2

1970.1-2010.1

1947.1-2010.2

Note the following. In the case of Spain: vintage 2005.2 starts in 2000.1 and the vintages
from 2005.3 to 2010.3 start in 1995.1. In the case of France: the vintages from 1999.4 to
2009.2 start in 1978.1. In the case of Italy: the vintages from 2000.1 to 2001.1 start in
1982.1; the vintages from 2003.3 to 2004.3 start in 1980.1; and the vintages from 2006.2 to
2010.3 start in 1981.1. In the case of the USA: the vintages from 1992.1 to 1992.4 and from
1999.4 to 2000.1 start in 1959.1; the vintages from 1996.1 to 1997.1 start in 1959.3. All these
missing observations might cause some minor imperfections in the recursive and moving OLS

estimates, which are usually solved by adjusting the samples or dropping some vintages.
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Appendix B. TVP Models

The table on the next page summarizes the 7'V P models we estimate to document the time-

varying properties of the predictive content of the term spread under the assumptions that:

e vy, v, and &, are normally distributed, with zero mean and constant variances;
o Cov(vy,vr) = Cov (v, &) = 0;
e the initial stochastic states, 3, and v, are independent of v, v, and &, for every ¢;

e the variances of v, vy, and &, the covariance between vy and &,, the system parameters
«, 0, and ¥ are estimated through maximum likelihood prior to the application of the

recursive algorithm that provides estimates of the states;

the initial conditions for the states and their covariance matrix are unknown.

Results are obtained using the CAPTAIN Toolbox for MATLAB, which implements an
efficient algorithm that allows for the optimal, robust, and unbiased estimation of dynamic
regression modelsﬁ This formulation of the estimation problem allows the recursive algo-
rithms, which estimate the state vector of time-varying parameters from measured data, to
provide an optimal solution based on the minimization of the associated mean squared errors.
State variables are estimated sequentially by the Kalman Filter whilst working through the
data in temporal order. When all the time series data are available for analysis, this filtering
operation is accompanied by optimal recursive smoothing. The estimates obtained from the
forward pass filtering algorithm are updated sequentially whilst working through the data
in reverse temporal order using a backwards-recursive Fixed Interval Smoothing (FIS) al-
gorithmﬂ The noise-to-variance ratio — that is, the ratio between the variance/covariance

matrix of v; and &, and the variance of the error term in the measurement equation, v; — is

%>See [Young et al. (2007)|for detailed information.
*Bryson and Ho (1969)[

18



estimated by maximum likelihood based on the prediction error decomposition.

TV P Models

System 1.a
Gtttk = @+ [ys¢ + vy

By = Bi_1 + vt

System 1.b

Gtttk = Q@+ Bys¢ + vy

By =081+ vt

System 2.a
Gtk = O+ BeSt + VeGi—kt + Vi
By =B+ vt

Ye ="

System 2.b
Gtrk = @+ BySt + Vi Gtk + Vi
By =081 + vt

Ye =7

System 2.c
Gtk = @+ BySt + Vi Gr—kt + Ve
Br=Bi—1+ v

Ve = Vee1 T &4

System 2.d
Gtttk = O+ BySt + Y Gt—kt + Vi
51: = 5/6t—1 + vt

Yo =01 + &

System 3.a
Gttrk = O+ BySt—1 + VeGr—kt + Vi
By =B+t

Ye =7

System 3.b
Gtk = O+ BySi—1 + V4 Gi—kt + Vi
B =081+ vt

Ye =7

System 3.c
Gtttk = O+ BySi—1 + Vi Gr—kt + Vi
Bi=Bi1+ v

Ve = Y1+ &

System 3.d

Gttrk = O+ BiSt-1 + VeGt—kt + Vi
Br=08,_1 + vt

Ve =01 + &

Note: k=1, 2, 3, 4.

In this work we only report the smoothed estimates of § in either System 1.a or 1.b. All

the other estimates can be found lonlinel
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Appendix C. Bayesian Comparison of Breaks Model

We make use of simple Bayesian methods to compare the likelihoods of alternative models

with breaks or no breaks. We estimate the model
S5t = p+ psi—1 + ZfizlﬁbiASt—i + &¢, (Sl.a)

which is equivalent to equation (S1), where p = Zfilai is a persistence parameter and the
¢,;s are transformations of the AR coefficients, ;. The error term is normally distributed
with zero mean and variance o?. In a model without breaks, o7 is thought to be constant —
i.e., 07 = o2 Vt. Alternatively, we model the variance of ¢; by allowing for the presence of
a one-time structural shift, so that 0? = 02 (1 — D;) + 02Dy, where D; is a dummy variable
that controls for the shift. We compute the marginal likelihoods of the models as in
and assume that D, is a discrete latent variable with Markov-transition probabilities
Prob(Diy1 = 0|Dy = 0) = q and Prob (D41 = 1|Dy = 1) = 1, with ¢ € (0,1). The implica-
tion is that there is a constant positive probability, (1 — g), for a break to occur in any period,
if it has not occurred yet. Once the break has occurred at a specific date tg, then D; = 1,
Yt > to (absorbing state)ﬂ We estimate the breakpoint date with the posterior mean of the
posterior distribution of ¢q. For the estimation of the model without breaks, we assume that
plo? ~ N (0,302), plo? ~ N (1,302), ¢;l0% ~ N (0,302) Vi, and 02 ~ InvGamma (1,2). In
the model with one break in the innovation variance, i ~ N (0,3), p ~ N (1,3), ¢; ~ N (0,3)
Vi, 0(2)71 ~ InvGamma (1,2), and ¢ ~ Beta (8,0.05). We impose that u, p, and the ¢;s are
statistically independent of each other.

The relatively informative priors are a compromise between the need of letting the data
speak and the necessity of incorporating the a-prior: information coming from an informal

inspection of the dataﬁ The distributional structure imposed to the model without breaks

37For the technical details about how to estimate Markov-Switching models in a Bayesian setting through
Gibbs sampling, see Chapter 9 in [Kim and Nelson (1999)|

38 First partial autocorrelations of ten-year government bond yields are usually close to one; they are smaller
for interest rate spread series. Higher-order partial autocorrelations are generally close to zero. The standard
Beta distribution ensures that the domain of the probability measure ¢ is over the interval [0,1]. The chosen
parameters imply that much of the mass of the distribution is spread around values close to one. This
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assigns priors for u, p, and ¢, that are elicited conditional on ¢2. This makes the linear

model fit the Normal-Gamma framework and the computation of many relevant quantities
analytically feasibleﬁ For each model we choose the lag order, 1 < K < 4, that maximizes
the marginal likelihood. The equations are estimated through the Gibbs sampler, a Markov
Chain Monte Carlo (MCMC') technique that computes marginal posterior distributions for
the parameters through the likelihood function of the model and by means of complex nu-
merical methods that simulate draws from the joint posterior.

Following a similar approach, we estimate models where the parameters are allowed to

break at the same date as the error variance,
st = o + Dty + (po + Depy) se-1 + Sy (Go; + Dieby) Asii + &4, (SL.b)

with Ho1 ~ N (0’ 3)a Po,1 ~ N (1a 3)7 ¢O,1;i ~ N (Oa 3) Viv Var (St) = O-? = 0(2) (1 B Dt) + U%Db
0§ 1 ~ InvGamma (1,2), and g ~ Beta (8,0.05).

All the variables are assumed to be independent of each other["]

specification gives more prior probability to late breakpoint dates in the sample. Different calibrations for the
prior of ¢ do not alter much the estimated changepoints.

39The Normal-Gamma framework is a particular case of a two-level hierarchical Bayesian model, in which
a conjugate prior distribution is specified at the first stage and a non-informative or weakly informative prior
is generally assumed at the second stage.

40The likelihood of a model with respect to another can be assessed by comparing the corresponding Bayes
factors and following the rules of thumb in [Jeffreys (1961)| and [Kass and Raftery (1995)
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difiedmi i i AType®fF i vation)

Compared k=1 k=2 k=3 k=4
Models IstBample 2ndBample FullSample 1stEampl FullBampl 1stEample 2ndBample FullBampl 1stBample 2ndBample |
Germany
MI1emM3 0.000 [@.152 [0.771 [@.812 [0.219 [1.200 @.756 [D.227 [1.159 [.727 [D.263 B1.159
M1em4 1315 [0.921 [D.693 1.077 [D.411 [0.313 0.425 [D.786 @.649 [D.362 [0.313 [@.037
MIEM5 [D.479 [D.618 @2.101 [D.261 [D.075 @.464 [D.100 [.288 [@.671 [D.044 @.271 [D.655
M2eM3 1.314 [0.192 m.121 1.151 @.226 [D.193 1.298 [0.359 [D.298 1.656 [D.380 [D.382
M2eM5 [@.015 [.058 [D.304 0.565 0.110 0.820 0.524 [0.175 [0.177 0.860 [0.317 ®.274
M3em5 [D.458 [D.023 [D.248 0.276 0.149 0.769 0.179 [D.057 [@.056 0.589 [.342 @.210
Spain
MI1em3 0.286 1.243 2427 [D.835 0.847 0.573 1.092 0.370
MI1em4 [D.591 0.377 1.042 0.670 0.253 0.386 1.027 0.420
MI1eM5 [@.298 0.263 0.313 [@.672 0.322 1.005 1.137 0.732
M2m3 [(0.497 [0.152 [D.701 [(2.497 [0.435 [1.414 NAN @.972 [1.253 [0.736
M2M5 [1.570 [D.982 2.643 [D.424 [(1.024 [0.572 [D.843 310 NAP @.302
M3eM5 [1.494 [D.896 @2.509 0.048 @.924 0.010 @.826 [1.168 1.487 [0.227
France
MI1EM3 0.460 0.224 0.904 0.306 1316 0.679 17.167 1324 0.929 0.214 1.272
M1em4 [0.059 0.079 0.206 0.044 0.261 0.369 [0.536 0.238 0.422 NAN [0.018
MI1em5 0.784 0.092 0.761 0.058 [0.184 [D.261 ?1.609 [0.824 0.204 NAN 0.081
M2em3 0.230 0.008 0.204 @.273 0.244 [0.701 0.070 [0.490 [D.801
M2am5 0.371 [0.109 [D.100 [0.221 [.909 [D.987 [0.425 NAN 315
M3eM5 0.316 [(D.101 [D.131 [(0.161 F1.111 0.793 [D.711 [1.548 (0.576 NAN [@1.454
Italy
MIiem3 [D.074 0.149 0.033 0.041 0.151 0.792 #0.032 0.159 [0.380 .245 [D.867
Miam4 0.140 .138 .474 @.078 [(0.548 138 [0.046 [(0.929 [@.784 [(0.084 [D.802
MIEM5 .935 @.737 [.605 [0.052 [D.663 [(1.475 [(D.158 [1.590 [(.788 [D.092 [D.818
M2av3 1.152 [0.014 0.360 NAN 0.381 0.581 [D.470 #.007 0.446 [0.464 0.129
M2emM5 [(0.397 [D.260 [D.369 [D.051 0.361 [D.051 [D.601 1.153 (0.379
M3em5 [D.592 [D.263 [1.089 [D.403 BD.051 [0.387 [@.007 [D.568 1.270 [D.316
UK
MIemM3 [D.896 0.858 [@.135 1.812 0.956 0.849 0.518 0.198 0.438 0.609
MI1EmM4 @.271 0.870 0.303 @.310 0.323 [(.402 0.222 [0.677 0.235 [D.491
MIEM5 [.164 0.766 0.460 [D.239 0.289 [D.453 0.220 [D.551 0.224 @.375
M2em3 1.001 0.935 1.487 0.623 [D.888 [D.140 D.642 1055 [@.569 [1.360
M2eM5 0.834 0.595 1.161 [1.056 [D.906 [@.703 m@.756 [0.621 [D.957
M3eM5 0.380 0.224 0.501 [D.942 [@.856 [D.637 [L.116 [0.603 [D.605 [D.756
MI1eM3 0.942 1.999 0.219 1.956 [.258 [D.493 1.266 0.003
M1em4 0.839 1.654 @.220 1.387 @.226 BL.767 1.214 [0.130
MI1emM5 0.344 1.781 [D.588 B.129 1.609 [D.394 2.932 1.659 [D.046
M2ev3 0.359 [D.263 0.530 [D.880 [1.106 0.618 [1.017 [@.832 0.217 [D.870
M2eM5 [1.982 1.940 [D.472 1.326 [D.988 [B.589 1.280 [D.737 [B.063 1413 [.438
M3em5 [1.960 2.278 [D.265 (2.143 1223 [D.746 [1.558 1.195 [@.282 [I1.402 1.480 [@.054

Notes: a positive (negative) value indicates that the second (first) model has a better forecasting power. In the comparison of nonEhested models: figures in bold indicate
statistical significance at least at the 10% level. NAN: the modified DieboldEMariano statistic is not available, but the test rejects the null of equal forecast accuracy and favors the
first model. NAP: the modified Diebold@Mariano statisticis not available, but the test rejects the null of equal forecast accuracy and favors the second model. Loss Function:@Root
Mean Squared Forecast Error. First Sample: 2001.172008.2 (Germany), 2001.122008.1 (Spain), 1999.422008.1 (France), 1999.422008.1 (Italy), 1990.122006.1 (UK), 1974.301983.1 (USA).
Second Sample: 2008.372010.3 (Germany), 2008.222010.3 (Spain), 2008.222010.3 (France), 2008.222010.3 (Italy), 2006.22010.2 (UK), 1983.222010.3 (USA). The test is run on realiime
data.

Table 2a. Diebold-Mariano Tests - Models Comparison (1)
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o ; dq Db ati

difiedmi i i ccuracy@Typ

Compared k=1 k=2 k=3 k=4
Models 1stBample 2ndBample FullBampl 1stBample 2ndBample FullBampl 1stBample 2ndBample FullBampl 1stBample 2ndBample FullBampl
Germany
M1emM3 [@.492 0.441 [D.098 [2.506 [0.401 [2.989 [1.820 [D.054 [1.828 [L.914 [D.248 [#1.996
M1em4 0.936 [D.667 [D.263 0.030 [D.433 .638 [D.866 [D.486 [1.450 [1.403 [0.429 [1.980
MIEM5 [B.182 [1.072 ®.734 [(1.148 [D.410 [@1.764 [D.802 .232 [.113 [.746 [@.012 [@0.770
M2m3 2.480 ®.399 1.193 1.228 [@.245 0.221 0.532 [.203 [D.054 0.845 @0.177 0.122
M2eM5 .899 [1.044 [5.416 0.651 [0.343 0.124 0.118 [D.183 .217 0.312 [0.013 0.273
M3em5 ®.213 [1.213 .107 0.395 [D.418 0.072 0.025 .175 @.199 0.167 0.056 0.243
Spain
MI1emM3 0.272 2424 0.913 0.703 1.639 0.557 0.474 1.255 0.251 0.413 0.920
MI1em4 [.787 1.032 0.350 1.424 1.542 0.440 0.733 1313 0.344 0.555 1.094
Miems (2.398 [0.740 [0.366 1.126 0.869 [D.108 0.629 0.925 0.067 0.492 0.935
M2m3 [1.358 [2.587 [1.297 [1.318 @.211 [1.274 F1.311 @.211 [1.687 m.721 [(2.461
M2em5 [B.985 (B.237 [2.284 .609 [(2.001 [@.306 (2.140 [1.182 0.603 0.327
M35 8.339 [B.088 2.199 [@.554 [@.913 [0.120 [1.469 [0.486 0.626 0.707
France
M1eM3 0.900 2.119 2.627 0.456 2.319 0.240 0.119
Mimm4 [1.521 #2.155 [D.001 [1.139 .916 0.892 .963
MI1m5 F1.223 [@2.593 [0.999 F1.120 [1.814 [@.901 [0.649
M2am3 1.412 [0.774 #2.275 [@.251 (2.489 [0.343 [(0.256
M2em5 28 ®.777 [(0.636 [2.792 [D.854 #5.677
M3EM5 [1.088 [2.699 [(D.661 2.629 [D.987 [1.239 [1.430 [1.926
Italy
M1em3 1.097 1110 2.634 0.052 0.805 1.407 0.328 0.507 1.100 [D.135 [0.098 [(D.168
MIiav4 [(2.290 .433 [2.867 [1.430 0.573 [1.257 [F1.195 0.640 [(0.949 [£1.010 0.341 [(D.653
MIEM5 [5.099 @229 [.478 [2.338 [.895 [2.639 [#1.900 0.273 [L.761 [1.295 0.302 [0.979
M2eM3 2114 [(0.993 1.446 0.184 1.249 0.743 [0.313 0.536 1.084 [0.136 0.953
M2emM5 [(B.978 [1.145 @.177 [D.800 [(2.526 [1.598 [0.518 @.178 [1.104 0.434 [@.813
M3em5 [B.835 [(1.147 ™.328 [D.819 [2.551 [1.457 [0.552 [1.945 (1113 0.337 [0.857
UK
MI1em3 B.428 2.531 ®.341 2.49% 0.741 0.314 @.224 [@.365 [D.385
MI1em4 #2.339 0.072 2.371 [1.446 [.905 [0.544 [.888 [(D.504 [F1.022
MI1eM5 ®2.972 [1.127 [(B.312 [1.570 [.909 [0.763 [D.744 [0.799 [.898
M2emM3 0.670 1.259 1.295 .456 [1.261 [1.149 [1.554 [F1.037 [1.750
M2em5 [1.103 0.822 .693 [2.669 [1.289 .632 .826 [@.305 [0.919
M3eM5 [11.268 0.332 [@.172 [2.568 [1.157 @.577 ®.619 [@.201 [D.683
USA
MIam3 2.236 [0.525 1.929 (2.340 3.030 [D.804 [1.449 1.347 [1.016 [.863 1.080 0.291
M1em4 (B.612 4.291 [0.323 @2.797 2.634 [0.665 (2.282 1.860 .516 [(2.446 1.587 .261
Miem5 8.293 3.872 [1.485 8.335 2.685 F1.379 .399 2.072 [1.091 [B.726 2119 [0.394
M2emM3 1.945 5.244 .522 [2.701 [0.061 [2.436 [F1.581 .409 [1.681 £1.786 0.193 [1.447
M2am5 8.770 2.053 (.050 .139 1.815 [1.978 #.335 1.676 [.377 @.673 1.870 [D.756
M35 8.786 3.523 [2.142 #.525 1.848 [1.329 (B.093 1.899 [0.724 [@2.333 2.027 [0.318

Notes: a positive (negative) value indicates that the second (first) model has a better forecasting power. In the comparison of nonkhested models: figures in bold indicate
statistical significance at least at the 10% level. NAN: the modified DieboldEMariano statistic is not available, but the test rejects the null of equal forecast accuracy and favors the
first model. NAP: the modified DieboldEMariano statistic is not available, but the test rejects the null of equal forecast accuracy and favors the second model. Loss Function:Root
Mean Squared Forecast Error. First Sample: 2001.122008.2 (Germany), 2001.122008.1 (Spain), 1999.422008.1 (France), 1999.422008.1 (Italy), 1990.12006.1 (UK), 1974.321984.3 (USA).
Second Sample: 2008.322010.3 (Germany), 2008.222010.3 (Spain), 2008.222010.3 (France), 2008.222010.3 (Italy), 2006.222010.2 (UK), 1984.422010.3 (USA). The test is run on real@ime

data.

Table 2b. Diebold-Mariano Tests - Models Comparison (2)
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InnovationWariance

L . Beta AverageffermBpread
_ (Bond® )
Dependentariables K Breaks 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
(Model@@Marginal®Process) _ k I k I k | k | k I k I k | k | k |
Germany
growth(t,t+1) 10yrGGovernment 2 1971.1 1994.4 0.058 0.146 0.070 0.324 0.623 1.041 1.697 0.878 1.357
growth(t,t+2) Bond®ield 1971.1 1994.4 0.058 0.146 0.068 0.272 0.609 1.075 1.697 0.878 1.357
growth(t,t+3) 19743 1989.1 0.086 0.157 0.085 0.483 0.828 0.336 1.323 1.529 0.913
growth(t,t+4) 19743 1988.4 0.085 0.157 0.089 0.629 0.781 0.268 1.323 1.545 0.909
growth(t,t+1) YieldBpread 2 1969.2 1981.3 0.441 0.928 0.135 3.981 0.475 0.669 2.115 0.813 1.078
growth(t,t+2) 1969.2 1981.3 0.441 0.928 0.136 2.663 0.461 0.599 2.115 0.813 1.078
growth(t,t+3) 1974.3 1985.2 1.011 0.378 0.138 0.761 0.811 0.424 1323 1.416 1.053
growth(t,t+4) 19743 1988.4 1.014 0.328 0.134 0.881 0.773 0.261 1.323 1.545 0.909
Spain
growth(t,t+1) 10yrfGGovernment 3 1995.1 2005.4 0.582 0.075 0.035 0.037 [0.451 0.018 [@.525 1.344 1.206
growth(t,t+2) Bond®ield 1995.1 2005.3 0.581 0.075 0.037 [0.036 [0.371 0.434 [0.525 1.351 1.197
growth(t,t+3) 1995.2 2005.2 0.576 0.078 0.045 @.018 @.214 0.310 [D.481 1.337 1.190
growth(t,t+4) 1995.1 2005.2 0.581 0.076 0.057 [D.005 [@0.320 0.467 [@.525 1.358 1.190
growth(t,t+1) YieldBpread 3 1994.2 2005.4 0.984 0.095 0.296 @.270 [D.247 0.451 @.710 1.455 1.206
growth(t,t+2) 1994.2 2005.3 0.984 0.097 0.290 [0.139 [0.325 0.737 D.710 1.465 1.197
growth(t,t+3) 1994.1 2005.2 0.922 0.123 0.292 [0.100 @.434 1.157 [0.756 1.483 1.190
growth(t,t+4) 1994.2  2005.2 0.984 0.099 0.292 [0.064 [.515 0.467 0.710 1.474 1.190
France
growth(t,t+1) 10yrGovernment 2 1976.4 1994.4 0.056 0.297 0.062 0.681 0.405 0.968 0.904 0.839 1.333
growth(t,t+2) Bond®ield 1978.1 1994.4 0.071 0.311 0.063 0.877 0.382 1.124 1.023 0.775 1.333
growth(t,t+3) 1978.1 1994.4 0.066 0.312 0.063 0.879 0.388 1.225 1.023 0.775 1.333
growth(t,t+4) 1978.1 1994.4 0.067 0.312 0.064 0.875 0.388 1.316 1.023 0.775 1.333
growth(t,t+1) YieldBpread 2 1978.3 1995.2 0.558 0.674 0.126 1.032 0.460 1.149 1.120 0.718 1.350
growth(t,t+2) 1978.2 1995.2 0.578 0.671 0.127 1.175 0.455 1.220 1.067 0.751 1.350
growth(t,t+3) 1978.1 1995.2 0.516 0.685 0.129 1.181 0.454 1.262 1.023 0.776 1.350
growth(t,t+4) 1978.1 1995.2 0.510 0.685 0.131 1.116 0.395 1.351 1.023 0.776 1.350

Notes: this table summarizes breaks estimated through QuEPerron (2007), applied on a system of two equations (Model 1 + Marginal Process (S1) for either 10yr Government
Bond Yields or Yield Spreads, as indicated). Sup likelihood ratio tests of no breaks against the alternative of two breaks reject the null of no breaks in all cases (size of the tests is
10%). Samples. Germany: from 1960.1 (10yr gov bond yield), from 1960.3 (yield spread); Spain: from 1980.4 (10yr gov bond yield), from 1980.4 (yield spread). France: from 1970.1
(10yrBovibondField),Hrom@970.3qyieldBpread).

Table ba. Two Breaks in Innovation Variances and Models Coefficients, Systems of

Equations (1)
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InnovationWariance

L . Beta AverageffermBpread
_ (Bonda )
Dependent®ariables K Breaks 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

(Model@@Marginal®Process) _ k I k I k | k | k | k | k | k | k |

Italy
growth(t,t+1) 10yrfGGovernment 2 2000.4 2005.3 0.423 0.052 0.033 0.016 1121 0.847 0.147 1.647 1.408
growth(t,t+2) Bond®ield 2000.3 2005.3 0.428 0.049 0.037 [.009 0.676 0.976 0.144 1.587 1.408
growth(t,t+3) 2000.3 2005.2 0.428 0.052 0.049 (@0.019 0.632 0.632 0.144 1.605 1.401
growth(t,t+4) 1995.2 2000.3 0.480 0.214 0.049 [D.186 2.230 1.507 [D.054 0.727 1.498
growth(t,t+1) YieldBpread 2 2000.4 2005.3 0.502 0.034 0.221 [0.071 1.184 1.452 0.147 1.647 1.408
growth(t,t+2) 2000.3 2005.3 0.508 0.038 0.230 0.001 0.757 1.533 0.144 1.587 1.408
growth(t,t+3) 2000.2 2005.2 0.514 0.038 0.225 [.049 0.405 1.694 0.135 1.567 1.401
growth(t,t+4) 2000.2 2005.1 0.514 0.040 0.217 [.139 0.275 1.897 0.135 1.575 1.401

UK
growth(t,t+1) 10yrGovernment 3 1994.2  2005.2 0.468 0.066 0.066 0.754 [0.100 0.734 [.322 0.358 0.468
growth(t,t+2) Bond®ield 1994.2 2005.2 0.470 0.067 0.065 0.742 [0.173 0.859 [0.322 0.358 0.468
growth(t,t+3) 1994.2 2005.1 0.474 0.066 0.063 0.711 [@.095 1.043 [0.322 0.376 0.429
growth(t,t+4) 1994.2 2004.4 0.473 0.067 0.064 0.671 [0.070 1.348 @.322 0.389 0.401
growth(t,t+1) YieldBpread 2 1994.2 2005.3 0.708 0.109 0.228 0.861 [D.033 0.901 [@.322 0.344 0.505
growth(t,t+2) 1994.2 2005.2 0.708 0.111 0.223 0.861 [D.084 1.078 [D.322 0.358 0.468
growth(t,t+3) 1994.2 2005.1 0.708 0.112 0.220 0.865 [D.082 1.255 .322 0.376 0.429
growth(t,t+4) 1994.2 2004.4 0.708 0.115 0.230 0.759 @.067 1731 [0.322 0.389 0.401

USA
growth(t,t+1) 10yrGovernment 2 1979.3 1987.3 0.085 0.748 0.139 1.506 1.298 0.215 0.089 0.591 1.268
growth(t,t+2) Bondiield 1977.3 1984.2 0.092 0.679 0.157 1.259 1.519 0.281 0.145 0.160 1.333
growth(t,t+3) 1991.1 2000.1 0.304 0.138 0.099 1.123 .378 0.587 0.311 1.427 1.399
growth(t,t+4) 1991.1 1999.3 0.304 0.146 0.111 1.053 .420 0.596 0.311 1.495 1.347
growth(t,t+1) YieldBpread 2 1973.2 1984.4 0.215 1.494 0.185 1.395 1.888 0.262 0.063 0.106 1.322
growth(t,t+2) 1971.4 1984.4 0.153 1.380 0.186 1.791 1.608 0.329 .109 0.200 1.322
growth(t,t+3) 1971.4 1984.4 0.153 1.380 0.185 1.746 1.449 0.368 [D.109 0.200 1.322
growth(t,t+4) 1991.1 1999.3 0.774 0.103 0.272 1.130 @.512 0.685 0.311 1.495 1.347

Notes: this table summarizes breaks estimated through QuEPerron (2007), applied on a system of two equations (Model 1 + Marginal Process (S1) for either 10yr Government
Bond Yields or Yield Spreads, as indicated). Sup likelihood ratio tests of no breaks against the alternative of two breaks reject the null of no breaks in all cases (size of the tests is
10%). Samples. Italy: from 1980.3 (10yr gov bond yield), from 1980.3 (yield spread); UK: from 1978.1 (10yr gov bond yield), from 1978.3 (yield spread); USA: from 1964.3 (10yr gov
bondField),FromA965.1qyieldBpread).

Table 5b. Two Breaks in Innovation Variances and Models Coefficients, Systems of

Equations (2)
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Figure la. Time-Varying Spread Coefficients (Smoothed Estimates)
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Figure 2a. Real-Time Estimates of § and Informativeness, Moving Regressions
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Figure 2b. Real-Time Estimates of 5 and Informativeness, Moving Regressions
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Figure 3a. Real-Time Estimates of RM SF Es, Recursive Regressions
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Figure 3b. Real-Time Estimates of RMSF Es, Recursive Regressions
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