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Abstract

We use TVP models and real-time data to describe the evolution of the leading prop-

erties of the yield spread for output growth in �ve European economies and in the US

over the last decades and until the third quarter of 2010. We evaluate the predictive

performance of benchmark term-structure models and identify structural breaks in the

marginal processes of term spreads and government bond yields to shed light on the

dynamic characteristics of the yield curve. Econometric analysis shows that: (i) the pre-

dictive content of the term spread is not always signi�cant over time and across countries;

(ii) the spread signi�cantly contributes to the forecast performance of simple growth re-

gressions in Europe, but not in the US in recent years; (iii) the variance of the random

shocks to the term spreads tends to fall in all countries. This decline is accompanied by

vanishing leading properties from the mid-1990s. Such properties reappear after 2008.
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1 Introduction

The slope of the term structure of interest rates is often cited as a useful leading economic

indicator.1 Conventional wisdom maintains that a negative slope is able to forecast business

cycle downturns and recessions a few quarters ahead in the US and in other OECD countries.

The theoretical economic literature has proposed several explanations for the predictive

power of the term spread � i.e., the di¤erence between a long-term nominal interest rate

and a short-term nominal rate.2 Its practical relevance for policy decisions is controversial,

though, and even recent empirical literature calls into question its usefulness for forecasting.

Estrella, Rodrigues, and Schich (2003) use econometric techniques for break testing to study

the stability properties of the relationship between the slope of the yield curve and subsequent

real activity. They consider continuous models �to predict economic growth �and binary

models �to predict recessions �for Germany and the US and document that the marginal

predictive content of the spread for US output growth recently disappeared. Similar evidence

is found in Dotsey (1998) for the United States. Giacomini and Rossi (2006) use new tests

for forecast breakdown and a variety of in-sample and out-of-sample evaluation procedures to

show the presence of structural breaks in the relationship between the slope of the yield curve

and the US real output growth. They �nd forecast breakdowns during the Burns-Miller and

Volcker monetary policy regimes and argue that the yield curve was a more reliable leading

indicator during the early part of the Greenspan era.3

Some of these authors point out that the features of the relationship between the spread

and economic activity may change following major economic shocks. In their attempt to

explain the breakdowns, other researchers stress the role of globalization and the main central

banks, which successfully achieved remarkable degrees of price stability, fostered sustained

growth, and induced weaker and less-frequent shifts in the term spread for prolonged periods

of time. Kucko and Chinn (2009) re-examine the evidence in the United States and some

1For example, see Stock and Watson (1989) and (1992).
2The term spread is also known as the yield spread, or the interest rate spread.
3Wright (2006) considers a number of probit models using the yield curve to forecast recessions in the

US and argues that not only the level but also the shape of the yield curve should be used to gain useful
information about the likely odds of a recession.
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European countries. They �nd that the predictive power of the yield curve deteriorated over

the years and claim that there are reasons to believe that European-country models perform

better than non-European-country models with recent data. In a survey of the existing

literature Wheelock and Wohar (2009) document that the term spread predicts output growth

and recessions up to one year in advance, but its usefulness varies across countries and over

time. However, while the ability of the spread to forecast economic growth diminished lately,

the slope of the term structure has remained a reliable predictor of recessions.

The latest international economic events, including the recent US �nancial crisis and

global recession, may have a¤ected the predictive power of the yield curve and motivate

a new cross-country analysis on its leading properties.4 We adopt a systematic approach

to estimate the time-variation in the predictive content of the term spread for future GDP

growth, to assess its stability, and to examine its relative forecasting performance in six

major OECD countries. The period of analysis is country-speci�c: generally, it is 1960-2010

for Germany, 1980-2010 for Spain and Italy, 1970-2010 for France, 1978-2010 for the UK,

and 1964-2010 for the US. The contribution to the empirical literature is threefold. First,

while most empirical studies either assume the relationship between future GDP growth and

the interest rate spread to be constant or just focus on its stability properties by testing

for structural breaks, we model and estimate its evolution through time-varying-parameter

(TV P ) models and real-time data, allowing for smooth transitions at each point in time.

Second, using a real-time dataset, we study the out-of sample forecast performance of a set

of simple, widely used, benchmark GDP growth regressions including the term spread as

an explanatory variable and compare it with that of autoregressive models. To shed novel

light on the dynamic characteristics of the yield curve, we estimate autoregressive models for

long-term interest rates and yield spreads and test for breaks in the model parameters and

innovation variance using a battery of state-of-the-art structural stability tests. Third, we

4 In June of 2004 the Fed started tightening its policy. They raised the Federal Funds Target from 1% to
5:25% at seventeen consecutive meetings. Short rates followed the Target and moved in the same direction.
However, long maturity rates fell. In a 2005 testimony at the Congress, Alan Greenspan de�ned the strange
behavior of the spread between long and short rates a conundrum. This US-speci�c phenomenon further
motivates the present piece of research.
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document the reappearance of the predictive content of the spread following the events of

2007 and 2008 that led to the global economic downturn.

We derive the following results. (i) The term spread is not a reliable predictor of output

growth. Its predictive content is signi�cant in the early parts of our country-speci�c samples,

then vanishes in later periods. Its leading properties, weak or non-existent between the mid-

1990s and 2008, signi�cantly reappear after then. (ii) The out-of-sample forecast accuracy

of GDP growth regressions is time-varying. It generally improves over time until 2008, after

which we observe a sharp, synchronized, deterioration in all countries. Benchmark term-

structure models exhibit a better forecast accuracy than autoregressive models in Europe,

unlike in the US in recent years. (iii) The variance of the random shocks to the term spreads

falls in all countries, consistently with the facts of the Great Moderation. This decreasing

variability is accompanied by weaker and declining leading properties until 2008.

2 The Term Spread as a Leading Economic Indicator

According to the preferred habitat theory, investors with heterogeneous investment horizons

require a premium to buy bonds with maturities outside their preferred habitat. If short-

term investors are prevalent in the �xed-income markets, long-term rates tend to be bigger

than short-term rates and the yield curve naturally slopes upwards due to the term premia.

Similar implications can be found in the liquidity premium theory, according to which there

exists a term premium that increases with maturity.5

The most common explanation of why the term spread should predict output growth is

related to countercyclical monetary policy. If the central bank lowers the policy interest rate,

nominal and real long- and short-term rates tend to decline. Long-term rates tend to fall less

than short-term rates because the monetary expansion raises long-term in�ation expectations

and the monetary authority is expected to switch to a contractionary stance in the future

to respond to potential increases in in�ation. The yield curve gets steeper and, since real

5 In the liquidity premium theory the interest rate on a long-term bond equals an average of short-term
interest rates expected to occur over the life of the long-term bond plus a premium that depends on the
supply and demand conditions for that bond.
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interest rates will remain low for a while, output growth is likely to be above average.6

Estrella (2005) formally derives the link between the spread and economic activity in a

small dynamic rational expectations model containing a Phillips curve, a dynamic IS curve,

the Fisher equation, the expectations hypothesis, and a monetary policy rule.7 In this frame-

work the positive link between the yield spread and expected future output is not structural

but in�uenced by the monetary policy regime. It is stronger when the monetary policy re-

sponse to output is small, weaker or nonexistent when the response is large. Changes in the

leading properties should then mirror changes in the monetary policy stance.

The consumption capital asset pricing model (CCAPM) implies a positive relationship

between the slope of the real yield curve and future real consumption growth. In real business

cycle models, based on the same �rst-order condition as the CCAPM, expected positive pro-

ductivity shocks increase future output. As agents substitute current for future consumption,

future real interest rates go up and the real yield curve gets steeper.8

3 Predicting Cumulative GDPGrowth Using the Term Spread

As customary in this strand of empirical literature, the focus is on a simple benchmark

term-structure model for predicting cumulative GDP growth,9

gt;t+k = �+ �st + �t, (1)

and on its two variants,

gt;t+k = �+ �st + 
gt�k;t + �t (2)

and

gt;t+k = �+ �st�1 + 
gt�k;t + �t, (3)

6According to this story, the predictive content of the term spread is a correlation between endogenous
variables, whose (co)movements are a¤ected by monetary policy actions.

7The expectations hypothesis of the term structure states that the interest rate on a long-term bond equals
an average of the short-term interest rates expected to occur over the life of the long-term bond.

8These models have implications for the real interest rates. The role of in�ation expectations is then crucial,
since the term structure is expressed in nominal terms.

9See also Estrella and Hardouvelis (1991) and Estrella and Mishkin (1997).
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where gt;t+k = 400
k ln

�
Yt+k
Yt

�
is cumulative growth between time t and t+ k, Yt is real GDP,

st = i10yr;t� i3m;t is the term spread, i10yr;t is an annualized ten-year government bond yield,

and i3m;t is an annualized three-month money market or interbank rate.10 The coe¢ cient as-

sociated with st, �, and the R2 of a model incorporate the basic information on the predictive

content of the spread for output growth. With a positive �, an inversion of the term structure

would predict a real downturn k (or k + 1) quarters in advance. A high informativeness �

i.e., a high R2 �would empirically corroborate this intuition.

4 The Econometric Methodologies

Previous studies document that instability is a feature of the leading properties of the term

spread.11 Ignoring it may have negative consequences on inference and forecasting. Two are

the main approaches to instability and change-point modeling: (i) a predominant strategy,

based on the estimation of models with a small number of change-points, usually one or two;

(ii) a more infrequent solution, based on the estimation of TV P models, where the parameters

change with each new observation as random walks or stationary autoregressive processes.

We �rst assume that the model coe¢ cients in (1) � (3) are time-varying. A compelling

critique of this in-sample estimation approach is that the models are estimated using data that

were not available at the time of the observation(s) being �tted. To circumvent this problem,

we also propose a real-time analysis. Recursive OLS regressions on subsequent vintages

of data describe the features of the long-run convergence of the coe¢ cient estimates over

the sample. Moving OLS regressions, based on a �xed-length moving window of ten years,

capture the short-run variation and the stability characteristics of the leading properties. At

a second stage, we run a battery of state-of-the art tests for breaks at unknown dates in

the marginal processes of government bond yields and term spreads. We use classical and

Bayesian tests for one or multiple breaks in the AR parameters and/or in the innovation

variance of simple autoregressive models describing the time evolution of these variables.

10This expression for cumulative growth is appropriate with quarterly data. k varies between 1 and 4.
11For example, Benati and Goodhart (2007).
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4.1 TVP Models for Cumulative GDP Growth

The starting point is models (1)� (3), for whose coe¢ cients we assume speci�c time-varying

properties. In the state-space speci�cations used for estimation, gt;t+k and st are the ob-

servable variables included in the measurement equations, the coe¢ cients � and 
 are the

unobservable state variables, assumed to be time-varying and following the transition equa-

tions that incorporate the characteristics of their time evolution.12 Such evolution may be

the result of slow changes in the process or some form of nonlinearity in the data. TV P

models change their parameters automatically and optimally to re�ect the variations in the

nature of the time series.13 The speci�cations of our TV P models �all reported in Appendix

B �are conventional and assume either random walks or stationary AR (1) processes as state

equations. We use an e¢ cient algorithm, which allows for the optimal, robust, and unbiased

estimation of dynamic regression models as discussed in Young et al. (2007).

4.2 Breakpoint Tests on Interest Rate Dynamics

We estimate univariate AR(K) models for the term spread or government bond yield,

st = �+�
K
i=1�ist�i + "t, (S1)

where "t is a serially uncorrelated random error term and � is the intercept. We select the lag

order, K, using the Schwarz Information Criterion (SIC). Then we estimate structural breaks

at unknown dates in the model parameters and/or the innovation variance. The classical tests

for breaks are based on Hansen (2000) and Qu and Perron (2007). Levin and Piger (2004)

are the reference for the Bayesian comparison of alternative breaks models. Using Qu and

Perron (2007), we also test for structural breaks in a system including equations (1) and (S1).

12A TV P model can be interpreted as a model with T�1 breaks in a sample of size T . With a small number
of structural breaks, the magnitude of the change in the coe¢ cients after a break is not typically restricted.
The implicit assumption is that, after the last estimated break, there will be no more. In contrast, in TV P
models, there is always a probability equal to one of a break in the next new observation. The size of the
break is limited by the assumption that the coe¢ cients evolve according to a speci�ed stochastic process.
13The TV P methodology is robust to the uncertainty concerning the speci�c form of time-variation present

in the data and is generally capable of successfully tracking processes subject to structural breaks.
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5 Empirical Results

What follows is a description of the main �ndings. Detailed tables and select �gures are

commented here and reported at the end of the paper.

5.1 The Data

The sample includes six OECD countries: Germany, Spain, France, Italy (in the Euro area),

the UK, and the US. We consider annualized ten-year government bond yields (long-term

interest rates) and annualized three-month money market rates or interbank o¤er rates (short-

term rates). The real GDP series are expressed in millions of national currency (volume

estimates, OECD reference year). The data on real GDP and the interest rates are taken

from the OECD database. The source of real-time data on GDP in Germany, Spain, France,

and Italy is the OECD Real-Time Data and Revisions Database. The UK real-time data

are downloaded from the Bank of England GDP Real-Time Database. The US real-time

series are collected from the Philadelphia Fed�s Real-Time Data Set for Macroeconomists

(RTDSM). Full details on the samples and, in the case of real-time data, vintages are reported

in Appendix A, where we also describe some minor issues in terms of missing observations.

Unless noted otherwise, all series are quarterly and seasonally adjusted. The vintages and

observations in the real-time dataset are also quarterly.

5.2 Benchmark OLS Estimates

Table 1 shows the OLS estimates of models (1) � (3). Depending on the time horizon over

which cumulative growth is computed, the adjusted samples range from 1980.1 (Spain and

Italy), 1960.1 (Germany), 1970.1 (France), 1978.1 (UK), or 1964.3 (USA), to 2009.2-2010.2.14

What emerges is a mixed picture where conventional wisdom is con�rmed only to some

extent. In Germany, France, the UK, and the USA the slope coe¢ cients associated with the

term spread are signi�cant and positive in all models and at all forecast horizons. The size of

14Adjacent growth �gures are calculated from overlapping data points, which likely cause problems of serial
correlation in the error terms of the models. Newey-West heteroskedasticity and serial correlation robust
standard errors are used in the regression analysis.
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the estimates is large, generally well above 0:5, and the corresponding levels of informativeness

are usually high, with few exceptions at the shorter horizons. No signi�cant predictive content

can be found in Spain and Italy. The impression is that the relationship between the spread

and economic growth is dissimilar across countries, or at least not consistently signi�cant.

However, the standard OLS approach is likely not to capture some important features of the

data. More sophisticated techniques would allow us to better describe the stability properties

of the model parameters and the time-variation in the relationship under investigation.

5.3 Time-Variation in GDP Growth Regressions

In this section we describe the time-varying properties of � in models (1) � (3). We esti-

mate TV P models, then perform a real-time analysis and assess the out-of-sample forecast

performance of the benchmark term-structure equations relative to autoregressive models.

5.3.1 TVP Models

Figures 1a-c show select time-varying estimates of � in model (1).15 Alternative estimates

from the other models, where we allow 
 to either vary with time or stay constant, provide

similar evidence.16 AR (1) or random-walk (RW ) variation in the yield-spread coe¢ cient is

chosen in each case using the R2 as a criterion for model selection.

In Germany the point estimates of � � generally positive for all values of k � slope

downward between 1960 and 2002, then move upwards. The two-standard-error con�dence

bands cover zero almost always with k = 3; 4, except for the period following 2006, when �

becomes statistically positive. With k = 1; 2 � is statistically positive between 1960 and 1985,

then becomes insigni�cant. The b�s exhibit more variation in the other European countries,
but the associated con�dence bands usually cover zero. A downward sloping term-spread

coe¢ cient is estimated in the US, signi�cantly positive at the beginning of the sample (from

1965), statistically negligible at the end. The statistical disappearance of the US leading

properties can be dated in the second half of the 1980s, at the end of the Volcker era and

15Systems 1.a-b in Appendix B.
16The intercept term, �, is kept constant in all models.
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the period of high in�ation post oil shocks.17 The UK point estimates of � sharply increase

in 2004/2005 and reach a signi�cantly positive peak around 2008/2009. The US term-spread

coe¢ cient picks up a bit around 2009, too, but remains statistically insigni�cant.18

In all cases, the TV P models exhibit a better in-sample performance than their OLS

counterparts, as indicated by the bigger coe¢ cients of determination.

5.3.2 Real-Time Analysis

We recursively estimate models (1) � (3) on the vintages of the real-time datasets. First,

we run recursive regressions by estimating the models over the full samples of each vintage.

The window size increases by one quarter at each step, as we switch from a vintage to the

one that follows. In this way we capture the long-run evolution of � as GDP revisions are

incorporated in the set of data.19 Then, we run moving regressions with a �xed window size

on the last forty quarters of each vintage. The attempt is to exclude remote information from

the estimates and describe the short-run time-variation incorporated in the coe¢ cients.20

Figures 2a-b show the moving regressions estimated on model (1). In France and Italy,

the slope coe¢ cient are stable and, most of the times, signi�cantly positive for a few years

after 1999. The statistical signi�cance of the � parameters vanishes in these countries in

2004. The coe¢ cients of determination, fairly high in the previous quarters, fall to almost

zero simultaneously, remain low until 2007/2008, then rapidly increase and accompany a

signi�cantly positive variation in the �s during the global recession period. The German

leading properties are non-signi�cant until 2009, then quickly become statistically positive.

In Spain they are statistically positive between 2001 and 2004 and then again from 2009. In

the UK and, particularly, the US, we observe a steady decline of the predictive content over

17TV P models often produce large standard errors and con�dence bands. Most likely, we fail to reject the
null of statistical non-signi�cance too often �i.e., we have low power. The spread might have had signi�cant
predictive content for longer periods in all countries and, in the US, the disappearance of the leading properties
could be probably placed at a later date.
18Four of the countries in the sample out of six have been in the Euro area and have had a common monetary

policy and similar interest rates since 1999. Their currencies were already closely tied from the mid-1990s.
However, the TV P point estimates of � do not reveal the existence of similar evolutions in the last 15 years.
19The recursive estimates are not reported here but can be found online.
20Earlier work in this literature is only based on the most recent vintage of data.
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time. The disappearance of the statistical signi�cance of � can be dated in 2002 in the UK

and in 1998 in the US. A slow fall of the US informativeness starts around 1984/1985. In

both countries the predictive content swiftly picks up in 2008, as indicated by the increasing

estimates of � and the corresponding R2s. Vanishing, weak, or non-existent leading properties

are estimated in all countries for most of the ten years between 1998 and 2008. A signi�cant

inversion of this trend occurs during the last �nancial crisis and world recession.

Policy makers are often interested in assessing the di¤erence between the indications they

obtain using the available information at the time of their decisions and the indications they

would get ex-post, if they knew future information and how past data will be revised. This

issue is relevant in a forecasting framework. An empirical investigation on the full real-time

dataset should be conducted if the goal is to uncover the evolution, subject to error, of a

forecasting relationship as new GDP �gures get released and old vintages revised. As the

last vintage of data is thought to be the series that measures the level of economic activity

with least error, the �nal vintage can be used to verify and, possibly, compare economic

relationships, also out of sample. The two approaches thus serve di¤erent purposes.

To highlight the discrepancies between the real-time analysis and a standard investigation

on the latest data revision, recursive and moving regressions are estimated on the last vintage

of each real-time dataset. Such estimates, also reported in Figures 2a-b, are pointwise di¤erent

from their counterparts based on the full real-time dataset.21 Using real-time data leads to

a concrete risk of misestimating the predictive content of the spread. The di¤erence between

the b�s (or R2s) may occasionally get substantial, determine incorrect analyses, and lead to
imprecise policy indications. There is no pattern in the sign of the divergence. However, since

the respective con�dence bands always overlap, such di¤erence is statistically insigni�cant.

21GDP series are continuously revised, often signi�cantly. Given that we cannot even measure GDP without
errors, we cannot expect real-time forecasts of real economic activity to be precise.
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Out-of-Sample Forecast Performance of GDP Growth Regressions

We benchmark (1)� (3) in terms of forecast performance against the autoregressive models

gt;t+k = �+ 
gt�k;t + �t (4)

and

gt;t+k = �+

3X
j=0


jgt�k�j;t�j + �t. (5)

We dynamically and statically forecast the last eight quarters of each vintage in the real-

time dataset.22 The root mean squared forecast error (RMSFE) is our metric to compare

the abilities of each model to predict growth. Figures 3a-b compare the evolutions of the

RMSFEs, recursively estimated from the �ve models.23

The forecast errors in France and Italy are stable and approximately of the same size

from 1999 to 2008, with a contemporaneous, although mild and temporary, deterioration

between 2003 and 2004. The forecast accuracy improves a little in both countries between

2004 and 2008. The errors are more erratic in Germany between 2001 and 2009, but the

average magnitude remains similar to that of France and Italy, with peaks in 2002, 2004, and

2008. The Spanish RMSFEs peak at the end of 2002 and then decline until 2008. The UK

forecasts become less accurate around 1992 (the currency crisis the led the pound sterling out

of the European Monetary System), 1997, and 2001. In the US, the accuracy deteriorates

in the second half of the 1970s and for a few years at the beginning of the 1980s and 1990s.

The �rst two US deteriorations look similar to those documented by Giacomini and Rossi

(2006) for the Burns-Miller and Volcker periods. A smaller deterioration occurs in 2001 under

Greenspan. The breakdowns in the US forecast accuracy are coincident with recessions. In

all countries, the RMSFEs become smaller over time until 2008, after which we observe a

22Dynamic forecasting performs a multi-step ahead forecast of the dependent variable. It requires that the
data for the exogenous variables be available for every observation in the forecast sample and that the values
for any lagged dependent variables be observed at the start of the forecast sample. Static forecasting performs
a series of one-step ahead forecasts of the dependent variable. It requires that the data for both the exogenous
and any lagged endogenous variables be observed for every observation in the forecast sample.
23k = 4 in the �gures, but we �nd similar patterns with k = 1; 2; and 3 and a forecast sample of one quarter.
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sharp, synchronized, worsening of the forecast accuracy of all models.

To statistically compare the term-structure models to models (4) and (5) in terms of out-

of-sample forecast performance, we run modi�ed Diebold-Mariano (DM) tests for equality

of forecast accuracy on the static forecasts.24 We would like to test the merits of all the

models, but a limitation of this test is that it can be only applied to pairs of non-nested

models. Unfortunately, some pairs contain models that are nested.25 The test statistic of

Diebold and Mariano (1995) has a nonstandard distribution under the null hypothesis of

equal forecast accuracy if the models are nested, as the models are identical under the null.26

Thus, not even bootstrap p-values would allow us to make such a comparison.27

Tables 2a-b report modi�ed DM statistics for non-nested models with forecast samples

of one quarter and eight quarters, respectively, on each vintage.28 We run the tests on the

full samples and on country-speci�c subsamples.29 With a forecast sample of one quarter,

the term-structure models perform as well as the alternative models, occasionally better, in

all European countries. In the US, the autoregressive models perform better over the second

subsample, worse in the �rst subsample, but we never reject the null of equal accuracy in

the full sample. With a forecast sample of eight quarters, the term-structure models perform

better at forecasting GDP growth than the autoregressive models in all European countries

in their speci�c �rst subsamples and full samples. In the US, the term-structure models do

a better job in the �rst period, just a marginally better job over the full sample, but are

24Harvey, Leybourne, and Newbold (1997) propose a modi�ed DM statistic based on an unbiased estimator
of the asymptotic (long-run) variance of

p
Td in the DM statistic, where T is the sample size and d is the

sample average of the loss di¤erential (in this work the di¤erence of the RMSFEs) the test is based on.
They show that, with small samples, a Student�s t distribution is more appropriate than a standard normal
distribution for the computation of the critical values.
25Model (1) is nested in (2); model (4) is nested in (2), (3), and (5).
26Clark and McCracken (2001).
27Faust and Wright (2009).
28A complication of the DM test (and its modi�ed version) regards the estimation of the asymptotic variance

of
p
Td. The standard practice is to estimate this variance by taking a weighted sum of the available sample

autocovariances. Optimal k-step ahead forecast errors are at most (k � 1)-dependent � i.e., autocorrelated
up to the (k � 1)-th order. (k � 1)-dependence implies that only (k � 1) sample autocovariances should be
used. Since the forecast horizon of our models is 1, 2, 3, or 4 quarters, we use the sample variance and
autocovariances up to the third order. In the event that a negative estimate arises, we treat it as zero and
automatically reject the null hypothesis of equal forecast accuracy. See Diebold and Mariano (1995) for details.
29The breaks for the determination of the subsamples are estimated in the middle 70% of each full sample

using a recursive algorithm that maximizes the absolute average di¤erence of the average RMSFEs of the
�ve models over two subsequent subsamples, for each value of k.
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outperformed by the autoregressive models in the second. At least in recent years, the US

results are consistent with the conclusions in Faust and Wright (2009). Using a new dataset

of vintage data consisting of a large number of variables, as observed at the time of each

Greenbook forecast since 1979, they show that a univariate AR (4) model better forecasts

US GDP growth than alternative speci�cations including other explanatory variables. Such

a �nding is not externally valid for the other countries in the sample, for which the term

spread provides a signi�cant contribution to the forecast performance.

5.4 Structural Breaks Evidence for Term Spreads and Bond Yields

Tables 3a-b show breaks in the parameters of (S1) based on Hansen (2000).30 Tables 4a-b

and 5a-b describe the outcomes of the Qu and Perron (2007) tests on (S1) and on a system

of two equations including (1) and (S1).31 Using Bayesian methods, Table 6 compares the

marginal log-likelihoods of model (S1) in each country with two of its one-break versions.32

Despite some heterogeneity in the estimated breaks, most shifts in the government bond

yields occur at the following dates: 1970/1971 and 1994.4 (Germany); 1995.1 and 2005

(Spain); 1978.1 and 1994.4 (France), 1996/1997 and end of 2000 (Italy); 1994.2 and 2004/2005

(UK); 1979.3 and 1991.1 (USA). In the case of the interest rate spreads �which is what we

should pay more attention to, since it is the variable we employ to predict output growth

� the breaks are mainly clustered around: 1969.2 and 1981.3 (Germany); 1994 and 2005

(Spain); 1978 and beginning of 1995 (France), 2000 and 2005 (Italy); 1993/1994 and 2005

(UK); end of 1971, end of 1982, and 1984.4 (USA).33

The breaks are similar within each country, independently of whether we assume shifts

in the innovation variance, in the coe¢ cients, or both. Consistently with the facts of the

Great Moderation, we observe a decline in the volatility of reduced-form random shocks in

30The unreported p-values are derived as in Andrews (1993) and Hansen (2000). We also compute
heteroskedasticity-robust bootstrap p-values based on 100; 000 bootstrap replications. In this exercise, An-
drews (1993)�s asymptotic critical values provide similar inference as the bootstrap.
31We test the null of no breaks against the alternatives of one break and, when appropriate, two breaks.
32Spreads and bond yields are better �tted by models with a break in the innovation variance than by

models with a break in both the innovation variance and the coe¢ cients. See Appendix C for further details.
33Unreported breakpoint Chow tests, used for further validation, signal that most of these shifts (taken as

exogenous) are signi�cant at conventional levels.
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the term-spread marginal processes. The ratios between innovation variances and variances

of the spreads exhibit a similar evolution. This drop is accompanied by a generally weaker

link between the term spread and the real growth rate from the mid-1990s to 2008.34

6 Conclusions

In this paper we estimate the time-variation in the predictive content of the term spread

for future GDP growth in six major OECD countries and study the forecasting properties

of a set of simple benchmark GDP growth regressions that include the term spread as an

explanatory variable. To shed light on the dynamic characteristics of the yield curve, we

estimate autoregressive models for long-term interest rates and yield spreads and test for

breaks in the model parameters and innovation variance with a battery of state-of-the-art

structural stability tests. Our investigation is based on an extensive use of TV P models,

real-time datasets, classical and Bayesian tests for structural breaks at unknown dates.

We argue that the spread is not a reliable predictor of output growth. To some extent,

its predictive content is statistically and economically signi�cant in the early parts of our

country-speci�c samples, especially in the US and UK. It vanishes in later periods, but

reappears in all countries after 2008, during the global downturn. Such leading properties

are characterized by time-variation and instability. The real-time analysis shows that the

out-of-sample forecast accuracy of simple benchmark GDP growth models is markedly time-

varying, but improves over time until 2008, then deteriorates with the �nancial crisis and

world recession. The benchmark term-structure models exhibit a better forecast accuracy

than the alternative atheoretical autoregressive models in Europe, but the term spread does

not signi�cantly contribute to forecasting growth in the US in recent years. Finally, the

structural breaks evidence indicates that the variance of the random shocks to the spreads is

declining, consistently with the facts of the Great Moderation. This decreased variability is

accompanied by weaker leading properties for approximately ten years until 2008.

34This pattern of decreased volatility of the random shocks is less clear, or at least not as pronounced, in
the case of government bond yields.
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8 Technical Appendix

We provide details on the dataset and on the estimation of TV P and Bayesian models.

Further information is given in the Companion Tecnhical Appendix.

Appendix A. Data Description

The �rst table describes the samples for each variable in each country. The second table

provides information on the GDP real-time dataset. Data are quarterly, as well as vintages
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and observations in the real-time dataset. Interest rates are never revised.

Short-Term Interest Rate Long-Term Interest Rate Term Spread Real GDP

Germany 1960.1-2010.3 1956.3-2010.3 1960.1-2010.3 1960.1-2010.3

Spain 1977.1-2010.3 1980.1-2010.3 1980.1-2010.3 1960.1-2010.3

France 1970.1-2010.3 1960.1-2010.3 1970.1-2010.3 1949.1-2010.2

Italy 1978.4-2010.3 1980.1-2010.3 1980.1-2010.3 1960.1-2010.3

UK 1978.1-2010.3 1960.1-2010.3 1978.1-2010.3 1955.1-2010.3

USA 1964.3-2010.3 1953.2-2010.3 1964.3-2010.3 1947.1-2010.3

Real-Time Data for Real GDP

Vintages Observations

Germany 1999.1-2010.3 1991.1-2010.2

Spain 1999.1-2010.3 1980.1-2010.2

France 1999.1-2010.3 1960.1-2010.2

Italy 1999.1-2010.3 1970.1-2010.2

UK 1990.1-2010.2 1970.1-2010.1

USA 1965.4-2010.3 1947.1-2010.2

Note the following. In the case of Spain: vintage 2005.2 starts in 2000.1 and the vintages

from 2005.3 to 2010.3 start in 1995.1. In the case of France: the vintages from 1999.4 to

2009.2 start in 1978.1. In the case of Italy: the vintages from 2000.1 to 2001.1 start in

1982.1; the vintages from 2003.3 to 2004.3 start in 1980.1; and the vintages from 2006.2 to

2010.3 start in 1981.1. In the case of the USA: the vintages from 1992.1 to 1992.4 and from

1999.4 to 2000.1 start in 1959.1; the vintages from 1996.1 to 1997.1 start in 1959.3. All these

missing observations might cause some minor imperfections in the recursive and moving OLS

estimates, which are usually solved by adjusting the samples or dropping some vintages.
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Appendix B. TVP Models

The table on the next page summarizes the TV P models we estimate to document the time-

varying properties of the predictive content of the term spread under the assumptions that:

� �t, �t, and �t are normally distributed, with zero mean and constant variances;

� Cov (�t; �t) = Cov (�t; �t) = 0;

� the initial stochastic states, �0 and 
0, are independent of �t, �t, and �t for every t;

� the variances of �t, �t, and �t, the covariance between �t and �t, the system parameters

�, �, and # are estimated through maximum likelihood prior to the application of the

recursive algorithm that provides estimates of the states;

� the initial conditions for the states and their covariance matrix are unknown.

Results are obtained using the CAPTAIN Toolbox for MATLAB, which implements an

e¢ cient algorithm that allows for the optimal, robust, and unbiased estimation of dynamic

regression models.35 This formulation of the estimation problem allows the recursive algo-

rithms, which estimate the state vector of time-varying parameters from measured data, to

provide an optimal solution based on the minimization of the associated mean squared errors.

State variables are estimated sequentially by the Kalman Filter whilst working through the

data in temporal order. When all the time series data are available for analysis, this �ltering

operation is accompanied by optimal recursive smoothing. The estimates obtained from the

forward pass �ltering algorithm are updated sequentially whilst working through the data

in reverse temporal order using a backwards-recursive Fixed Interval Smoothing (FIS) al-

gorithm.36 The noise-to-variance ratio �that is, the ratio between the variance/covariance

matrix of �t and �t and the variance of the error term in the measurement equation, �t �is

35See Young et al. (2007) for detailed information.
36Bryson and Ho (1969).
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estimated by maximum likelihood based on the prediction error decomposition.

TV P Models

System 1.a System 2.a System 3.a

gt;t+k = �+ �tst + �t gt;t+k = �+ �tst + 
tgt�k;t + �t gt;t+k = �+ �tst�1 + 
tgt�k;t + �t

�t = �t�1 + �t �t = �t�1 + �t �t = �t�1 + �t


t = 
 
t = 


System 1.b System 2.b System 3.b

gt;t+k = �+ �tst + �t gt;t+k = �+ �tst + 
tgt�k;t + �t gt;t+k = �+ �tst�1 + 
tgt�k;t + �t

�t = ��t�1 + �t �t = ��t�1 + �t �t = ��t�1 + �t


t = 
 
t = 


System 2.c System 3.c

gt;t+k = �+ �tst + 
tgt�k;t + �t gt;t+k = �+ �tst�1 + 
tgt�k;t + �t

�t = �t�1 + �t �t = �t�1 + �t


t = 
t�1 + �t 
t = 
t�1 + �t

System 2.d System 3.d

gt;t+k = �+ �tst + 
tgt�k;t + �t gt;t+k = �+ �tst�1 + 
tgt�k;t + �t

�t = ��t�1 + �t �t = ��t�1 + �t


t = #
t�1 + �t 
t = #
t�1 + �t

Note: k=1, 2, 3, 4.

In this work we only report the smoothed estimates of � in either System 1.a or 1.b. All

the other estimates can be found online.
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Appendix C. Bayesian Comparison of Breaks Model

We make use of simple Bayesian methods to compare the likelihoods of alternative models

with breaks or no breaks. We estimate the model

st = �+ �st�1 +�
K�1
i=1 �i�st�i + "t, (S1.a)

which is equivalent to equation (S1), where � = �Ki=1�i is a persistence parameter and the

�is are transformations of the AR coe¢ cients, �i. The error term is normally distributed

with zero mean and variance �2t . In a model without breaks, �
2
t is thought to be constant �

i.e., �2t = �2 8t. Alternatively, we model the variance of "t by allowing for the presence of

a one-time structural shift, so that �2t = �
2
0 (1�Dt) + �21Dt, where Dt is a dummy variable

that controls for the shift. We compute the marginal likelihoods of the models as in Chib

(1998) and assume that Dt is a discrete latent variable with Markov-transition probabilities

Prob (Dt+1 = 0jDt = 0) = q and Prob (Dt+1 = 1jDt = 1) = 1, with q 2 (0; 1). The implica-

tion is that there is a constant positive probability, (1� q), for a break to occur in any period,

if it has not occurred yet. Once the break has occurred at a speci�c date t0, then Dt = 1,

8t � t0 (absorbing state).37 We estimate the breakpoint date with the posterior mean of the

posterior distribution of q. For the estimation of the model without breaks, we assume that

�j�2 � N
�
0; 3�2

�
, �j�2 � N

�
1; 3�2

�
, �ij�2 � N

�
0; 3�2

�
8i, and �2 � InvGamma (1; 2). In

the model with one break in the innovation variance, � � N (0; 3), � � N (1; 3), �i � N (0; 3)

8i, �20;1 � InvGamma (1; 2), and q � Beta (8; 0:05). We impose that �, �, and the �is are

statistically independent of each other.

The relatively informative priors are a compromise between the need of letting the data

speak and the necessity of incorporating the a-priori information coming from an informal

inspection of the data.38 The distributional structure imposed to the model without breaks

37For the technical details about how to estimate Markov-Switching models in a Bayesian setting through
Gibbs sampling, see Chapter 9 in Kim and Nelson (1999).
38First partial autocorrelations of ten-year government bond yields are usually close to one; they are smaller

for interest rate spread series. Higher-order partial autocorrelations are generally close to zero. The standard
Beta distribution ensures that the domain of the probability measure q is over the interval [0; 1]. The chosen
parameters imply that much of the mass of the distribution is spread around values close to one. This
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assigns priors for �, �, and �i that are elicited conditional on �
2. This makes the linear

model �t the Normal-Gamma framework and the computation of many relevant quantities

analytically feasible.39 For each model we choose the lag order, 1 � K � 4, that maximizes

the marginal likelihood. The equations are estimated through the Gibbs sampler, a Markov

Chain Monte Carlo (MCMC) technique that computes marginal posterior distributions for

the parameters through the likelihood function of the model and by means of complex nu-

merical methods that simulate draws from the joint posterior.

Following a similar approach, we estimate models where the parameters are allowed to

break at the same date as the error variance,

st = �0 +Dt�1 + (�0 +Dt�1) st�1 +�
K�1
i=1 (�0i +Dt�1i)�st�i + "t, (S1.b)

with �0;1 � N (0; 3), �0;1 � N (1; 3), �0;1;i � N (0; 3) 8i, V ar ("t) = �2t = �20 (1�Dt) + �21Dt,

�20;1 � InvGamma (1; 2), and q � Beta (8; 0:05).

All the variables are assumed to be independent of each other.40

speci�cation gives more prior probability to late breakpoint dates in the sample. Di¤erent calibrations for the
prior of q do not alter much the estimated changepoints.
39The Normal-Gamma framework is a particular case of a two-level hierarchical Bayesian model, in which

a conjugate prior distribution is speci�ed at the �rst stage and a non-informative or weakly informative prior
is generally assumed at the second stage.
40The likelihood of a model with respect to another can be assessed by comparing the corresponding Bayes

factors and following the rules of thumb in Je¤reys (1961) and Kass and Raftery (1995).
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9 Tables and Figures

Table 1. Growth Regressions, Benchmark OLS Estimates
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1st Sample 2nd Sample Full Sample 1st Sample 2nd Sample Full Sample 1st Sample 2nd Sample Full Sample 1st Sample 2nd Sample Full Sample

M1­M3 0.000 ­0.152 ­0.771 ­0.812 ­0.219 ­1.200 ­0.756 ­0.227 ­1.159 ­0.727 ­0.263 ­1.159
M1­M4 1.315 ­0.921 ­0.693 1.077 ­0.411 ­0.313 0.425 ­0.786 ­0.649 ­0.362 ­0.313 ­1.037
M1­M5 ­0.479 ­0.618 ­2.101 ­0.261 ­0.075 ­0.464 ­0.100 ­0.288 ­0.671 ­0.044 ­0.271 ­0.655
M2­M3 1.314 ­0.192 ­0.121 1.151 ­0.226 ­0.193 1.298 ­0.359 ­0.298 1.656 ­0.380 ­0.382
M2­M5 ­0.015 ­0.058 ­0.304 0.565 0.110 0.820 0.524 ­0.175 ­0.177 0.860 ­0.317 ­0.274
M3­M5 ­0.458 ­0.023 ­0.248 0.276 0.149 0.769 0.179 ­0.057 ­0.056 0.589 ­0.342 ­0.210

M1­M3 0.286 1.243 2.427 ­0.835 0.847 1.331 ­0.041 0.573 1.092 0.066 0.370 0.897
M1­M4 ­0.591 0.377 1.042 0.670 0.253 0.873 0.481 0.386 1.027 0.765 0.420 1.131
M1­M5 ­1.298 0.263 0.313 ­0.672 0.322 0.763 ­0.045 1.005 1.137 0.526 0.732 1.118
M2­M3 ­0.497 ­0.152 ­0.701 ­2.497 ­0.435 ­1.725 ­1.414 NAN ­1.972 ­1.253 ­0.736 ­1.550
M2­M5 ­1.570 ­0.982 ­2.643 ­0.424 ­1.024 ­1.524 ­0.572 ­0.843 ­1.310 NAP ­0.302 ­0.838
M3­M5 ­1.494 ­0.896 ­2.509 0.048 ­0.924 ­1.379 0.010 ­0.826 ­1.168 1.487 ­0.227 ­0.521

M1­M3 0.460 0.224 0.904 0.864 0.306 1.316 0.679 17.167 1.324 0.929 0.214 1.272
M1­M4 ­0.059 0.079 0.206 0.196 0.044 0.261 0.369 ­0.536 ­0.238 0.422 NAN ­0.018
M1­M5 0.784 0.092 0.761 ­0.394 0.058 ­0.184 ­0.261 ­1.609 ­0.824 0.204 NAN 0.081
M2­M3 0.230 0.008 0.204 ­0.449 ­0.273 ­0.912 ­0.244 ­0.701 ­1.039 0.070 ­0.490 ­0.801
M2­M5 0.371 ­0.109 ­0.100 ­1.130 ­0.221 ­1.324 ­0.909 ­0.987 ­1.696 ­0.425 NAN ­1.315
M3­M5 0.316 ­0.101 ­0.131 ­1.104 ­0.161 ­1.111 ­0.793 ­0.711 ­1.548 ­0.576 NAN ­1.454

M1­M3 ­0.074 0.149 0.470 0.033 0.041 0.151 0.792 ­0.032 0.159 ­0.380 ­0.245 ­0.867
M1­M4 0.140 ­0.138 ­0.049 ­0.474 ­0.078 ­0.548 ­1.138 ­0.046 ­0.929 ­0.784 ­0.084 ­0.802
M1­M5 ­0.935 ­0.737 ­1.864 ­0.605 ­0.052 ­0.663 ­1.475 ­0.158 ­1.590 ­0.788 ­0.092 ­0.818
M2­M3 1.152 ­0.014 1.121 0.360 NAN 0.381 0.581 ­0.470 ­0.007 0.446 ­0.464 0.129
M2­M5 ­0.397 ­0.260 ­0.977 ­0.369 ­0.051 ­0.361 ­1.381 ­0.051 ­1.125 ­0.601 1.153 ­0.379
M3­M5 ­0.592 ­0.263 ­1.089 ­0.403 ­0.051 ­0.387 ­1.252 ­0.007 ­0.977 ­0.568 1.270 ­0.316

M1­M3 ­0.896 0.858 ­0.135 1.812 0.956 2.215 0.849 0.518 1.216 0.198 0.438 0.609
M1­M4 ­0.271 0.870 0.303 ­0.310 0.323 ­0.013 ­0.402 0.222 ­0.203 ­0.677 0.235 ­0.491
M1­M5 ­0.164 0.766 0.460 ­0.239 0.289 0.030 ­0.453 0.220 ­0.257 ­0.551 0.224 ­0.375
M2­M3 1.001 0.935 1.487 0.623 ­0.888 ­0.012 ­0.140 ­0.642 ­0.491 ­1.055 ­0.569 ­1.360
M2­M5 0.834 0.595 1.161 ­0.910 ­1.056 ­1.603 ­0.906 ­0.703 ­1.233 ­0.756 ­0.621 ­0.957
M3­M5 0.380 0.224 0.501 ­1.048 ­0.942 ­1.653 ­0.856 ­0.637 ­1.116 ­0.603 ­0.605 ­0.756

M1­M3 0.569 0.734 0.942 ­0.983 1.999 0.219 ­0.827 1.956 ­0.258 ­0.493 1.266 0.003
M1­M4 ­1.072 3.073 0.839 ­1.596 1.654 ­0.220 ­1.518 1.387 ­0.226 ­1.767 1.214 ­0.130
M1­M5 ­1.619 2.852 0.344 ­2.860 1.781 ­0.588 ­3.129 1.609 ­0.394 ­2.932 1.659 ­0.046
M2­M3 0.359 ­1.617 ­0.263 ­1.234 0.530 ­0.880 ­1.106 0.618 ­1.017 ­0.832 0.217 ­0.870
M2­M5 ­1.982 1.940 ­0.472 ­2.912 1.326 ­0.988 ­3.589 1.280 ­0.737 ­3.063 1.413 ­0.438
M3­M5 ­1.960 2.278 ­0.265 ­2.143 1.223 ­0.746 ­1.558 1.195 ­0.282 ­1.402 1.480 ­0.054

Modified Diebold­Mariano Test for Equality of Forecast Accuracy (Type of Forecast on each Vintage: One­Step Ahead; Forecast Sample: One Observation)

France

k=1 k=2 k=3 k=4

Germany

Spain

Compared
Models

Italy

UK

USA

Notes: a positive (negative) value indicates that the second (first) model has a better forecasting power. In the comparison of non­nested models: figures in bold indicate
statistical significance at least at the 10% level. NAN: the modified Diebold­Mariano statistic is not available, but the test rejects the null of equal forecast accuracy and favors the
first model. NAP: the modified Diebold­Mariano statistic is not available, but the test rejects the null of equal forecast accuracy and favors the second model. Loss Function: Root
Mean Squared Forecast Error. First Sample: 2001.1­2008.2 (Germany), 2001.1­2008.1 (Spain), 1999.4­2008.1 (France), 1999.4­2008.1 (Italy), 1990.1­2006.1 (UK), 1974.3­1983.1 (USA).
Second Sample: 2008.3­2010.3 (Germany), 2008.2­2010.3 (Spain), 2008.2­2010.3 (France), 2008.2­2010.3 (Italy), 2006.2­2010.2 (UK), 1983.2­2010.3 (USA). The test is run on real­time
data.

Table 2a. Diebold-Mariano Tests - Models Comparison (1)
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1st Sample 2nd Sample Full Sample 1st Sample 2nd Sample Full Sample 1st Sample 2nd Sample Full Sample 1st Sample 2nd Sample Full Sample

M1­M3 ­0.492 0.441 ­0.098 ­2.506 ­0.401 ­2.989 ­1.820 ­0.054 ­1.828 ­1.914 ­0.248 ­1.996
M1­M4 0.936 ­0.667 ­0.263 0.030 ­0.433 ­0.638 ­0.866 ­0.486 ­1.450 ­1.403 ­0.429 ­1.980
M1­M5 ­3.182 ­1.072 ­4.734 ­1.148 ­0.410 ­1.764 ­0.802 ­0.232 ­1.113 ­0.746 ­0.012 ­0.770
M2­M3 2.480 ­0.399 1.193 1.228 ­0.245 0.221 0.532 ­0.203 ­0.054 0.845 ­0.177 0.122
M2­M5 ­3.899 ­1.044 ­5.416 0.651 ­0.343 0.124 0.118 ­0.183 ­0.217 0.312 ­0.013 0.273
M3­M5 ­4.213 ­1.213 ­6.107 0.395 ­0.418 0.072 0.025 ­0.175 ­0.199 0.167 0.056 0.243

M1­M3 0.272 1.245 2.424 0.913 0.703 1.639 0.557 0.474 1.255 0.251 0.413 0.920
M1­M4 ­0.787 1.557 1.032 0.350 1.424 1.542 0.440 0.733 1.313 0.344 0.555 1.094
M1­M5 ­2.398 2.304 ­0.740 ­0.366 1.126 0.869 ­0.108 0.629 0.925 0.067 0.492 0.935
M2­M3 ­1.358 ­0.768 ­2.587 ­1.297 ­1.318 ­2.211 ­1.274 ­1.311 ­2.211 ­1.687 ­0.721 ­2.461
M2­M5 ­3.985 ­1.127 ­3.237 ­2.284 ­0.609 ­2.001 ­1.872 ­0.306 ­2.140 ­1.182 0.603 0.327
M3­M5 ­3.339 ­1.049 ­3.088 ­2.199 ­0.554 ­1.913 ­1.661 ­0.120 ­1.469 ­0.486 0.626 0.707

M1­M3 0.162 0.900 2.119 2.627 0.456 2.319 1.679 0.240 1.637 0.471 0.119 0.591
M1­M4 ­0.635 ­1.521 ­2.155 ­0.001 ­1.139 ­0.916 0.301 ­0.892 ­0.290 0.313 ­0.963 ­0.147
M1­M5 ­1.398 ­1.223 ­2.593 ­0.999 ­1.120 ­1.814 ­0.933 ­0.901 ­1.585 ­0.557 ­0.649 ­1.082
M2­M3 ­1.640 1.412 ­0.774 ­2.275 ­0.251 ­2.489 ­1.705 ­0.343 ­2.059 ­0.642 ­0.256 ­1.000
M2­M5 ­1.260 ­1.028 ­2.777 ­2.232 ­0.636 ­2.792 ­1.774 ­0.854 ­2.615 ­1.347 ­5.677 ­2.122
M3­M5 ­1.080 ­1.088 ­2.699 ­1.999 ­0.661 ­2.629 ­1.560 ­0.987 ­2.415 ­1.239 ­1.430 ­1.926

M1­M3 1.097 1.110 2.634 0.052 0.805 1.407 0.328 0.507 1.100 ­0.135 ­0.098 ­0.168
M1­M4 ­2.290 ­0.433 ­2.867 ­1.430 0.573 ­1.257 ­1.195 0.640 ­0.949 ­1.010 0.341 ­0.653
M1­M5 ­5.099 ­1.229 ­6.478 ­2.338 ­0.895 ­2.639 ­1.900 0.273 ­1.761 ­1.295 0.302 ­0.979
M2­M3 2.114 ­0.993 1.446 1.141 0.184 1.249 0.743 ­0.313 0.536 1.084 ­0.136 0.953
M2­M5 ­3.978 ­1.145 ­4.177 ­1.640 ­0.800 ­2.526 ­1.598 ­0.518 ­2.178 ­1.104 0.434 ­0.813
M3­M5 ­3.835 ­1.147 ­4.328 ­1.620 ­0.819 ­2.551 ­1.457 ­0.552 ­1.945 ­1.113 0.337 ­0.857

M1­M3 ­3.428 ­2.531 ­4.341 2.071 0.933 2.496 0.741 0.314 0.922 ­0.224 ­0.365 ­0.385
M1­M4 ­2.339 ­0.072 ­2.371 ­1.308 ­0.441 ­1.446 ­0.905 ­0.544 ­1.059 ­0.888 ­0.504 ­1.022
M1­M5 ­2.972 ­1.127 ­3.312 ­1.320 ­0.834 ­1.570 ­0.909 ­0.763 ­1.099 ­0.744 ­0.799 ­0.898
M2­M3 0.670 1.259 1.295 ­0.363 ­0.471 ­0.456 ­1.261 ­1.149 ­1.458 ­1.554 ­1.037 ­1.750
M2­M5 ­1.103 0.822 ­0.693 ­1.995 ­1.160 ­2.669 ­1.289 ­0.632 ­1.567 ­0.826 ­0.305 ­0.919
M3­M5 ­1.268 0.332 ­1.172 ­1.911 ­1.128 ­2.568 ­1.157 ­0.577 ­1.420 ­0.619 ­0.201 ­0.683

M1­M3 2.236 ­0.525 1.929 ­2.340 3.030 ­0.804 ­1.449 1.347 ­1.016 ­0.863 1.080 ­0.291
M1­M4 ­3.612 4.291 ­0.323 ­2.797 2.634 ­0.665 ­2.282 1.860 ­0.516 ­2.446 1.587 ­0.261
M1­M5 ­8.293 3.872 ­1.485 ­8.335 2.685 ­1.379 ­6.399 2.072 ­1.091 ­3.726 2.119 ­0.394
M2­M3 1.945 ­6.244 ­0.522 ­2.701 ­0.061 ­2.436 ­1.581 ­0.409 ­1.681 ­1.786 0.193 ­1.447
M2­M5 ­8.770 2.053 ­3.050 ­9.139 1.815 ­1.978 ­7.335 1.676 ­1.377 ­4.673 1.870 ­0.756
M3­M5 ­8.786 3.523 ­2.142 ­6.525 1.848 ­1.329 ­3.093 1.899 ­0.724 ­2.333 2.027 ­0.318

Notes: a positive (negative) value indicates that the second (first) model has a better forecasting power. In the comparison of non­nested models: figures in bold indicate
statistical significance at least at the 10% level. NAN: the modified Diebold­Mariano statistic is not available, but the test rejects the null of equal forecast accuracy and favors the
first model. NAP: the modified Diebold­Mariano statistic is not available, but the test rejects the null of equal forecast accuracy and favors the second model. Loss Function: Root
Mean Squared Forecast Error. First Sample: 2001.1­2008.2 (Germany), 2001.1­2008.1 (Spain), 1999.4­2008.1 (France), 1999.4­2008.1 (Italy), 1990.1­2006.1 (UK), 1974.3­1984.3 (USA).
Second Sample: 2008.3­2010.3 (Germany), 2008.2­2010.3 (Spain), 2008.2­2010.3 (France), 2008.2­2010.3 (Italy), 2006.2­2010.2 (UK), 1984.4­2010.3 (USA). The test is run on real­time
data.

USA

Germany

Modified Diebold­Mariano Test for Equality of Forecast Accuracy (Type of Forecast on each Vintage: One­Step Ahead; Forecast Sample: Eight Observations)
k=1 k=2 k=3 k=4Compared

Models

Spain

France

Italy

UK

Table 2b. Diebold-Mariano Tests - Models Comparison (2)
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K
1st

Subsample
2nd

Subsample
3rd

Subsample
1st

Subsample
2nd

Subsample
3rd

Subsample
1st

Subsample
2nd

Subsample
3rd

Subsample

growth(t,t+1) 10yr Government 2 1971.1 1994.4 0.058 0.146 0.070 0.324 0.623 1.041 1.697 0.878 1.357
growth(t,t+2) Bond Yield 1971.1 1994.4 0.058 0.146 0.068 0.272 0.609 1.075 1.697 0.878 1.357
growth(t,t+3) 1974.3 1989.1 0.086 0.157 0.085 0.483 0.828 0.336 1.323 1.529 0.913
growth(t,t+4) 1974.3 1988.4 0.085 0.157 0.089 0.629 0.781 0.268 1.323 1.545 0.909

growth(t,t+1) Yield Spread 2 1969.2 1981.3 0.441 0.928 0.135 3.981 0.475 0.669 2.115 0.813 1.078
growth(t,t+2) 1969.2 1981.3 0.441 0.928 0.136 2.663 0.461 0.599 2.115 0.813 1.078
growth(t,t+3) 1974.3 1985.2 1.011 0.378 0.138 0.761 0.811 0.424 1.323 1.416 1.053
growth(t,t+4) 1974.3 1988.4 1.014 0.328 0.134 0.881 0.773 0.261 1.323 1.545 0.909

growth(t,t+1) 10yr Government 3 1995.1 2005.4 0.582 0.075 0.035 0.037 ­0.451 0.018 ­0.525 1.344 1.206
growth(t,t+2) Bond Yield 1995.1 2005.3 0.581 0.075 0.037 ­0.036 ­0.371 0.434 ­0.525 1.351 1.197
growth(t,t+3) 1995.2 2005.2 0.576 0.078 0.045 ­0.018 ­0.214 0.310 ­0.481 1.337 1.190
growth(t,t+4) 1995.1 2005.2 0.581 0.076 0.057 ­0.005 ­0.320 0.467 ­0.525 1.358 1.190

growth(t,t+1) Yield Spread 3 1994.2 2005.4 0.984 0.095 0.296 ­0.270 ­0.247 0.451 ­0.710 1.455 1.206
growth(t,t+2) 1994.2 2005.3 0.984 0.097 0.290 ­0.139 ­0.325 0.737 ­0.710 1.465 1.197
growth(t,t+3) 1994.1 2005.2 0.922 0.123 0.292 ­0.100 ­0.434 1.157 ­0.756 1.483 1.190
growth(t,t+4) 1994.2 2005.2 0.984 0.099 0.292 ­0.064 ­0.515 0.467 ­0.710 1.474 1.190

growth(t,t+1) 10yr Government 2 1976.4 1994.4 0.056 0.297 0.062 0.681 0.405 0.968 0.904 0.839 1.333
growth(t,t+2) Bond Yield 1978.1 1994.4 0.071 0.311 0.063 0.877 0.382 1.124 1.023 0.775 1.333
growth(t,t+3) 1978.1 1994.4 0.066 0.312 0.063 0.879 0.388 1.225 1.023 0.775 1.333
growth(t,t+4) 1978.1 1994.4 0.067 0.312 0.064 0.875 0.388 1.316 1.023 0.775 1.333

growth(t,t+1) Yield Spread 2 1978.3 1995.2 0.558 0.674 0.126 1.032 0.460 1.149 1.120 0.718 1.350
growth(t,t+2) 1978.2 1995.2 0.578 0.671 0.127 1.175 0.455 1.220 1.067 0.751 1.350
growth(t,t+3) 1978.1 1995.2 0.516 0.685 0.129 1.181 0.454 1.262 1.023 0.776 1.350
growth(t,t+4) 1978.1 1995.2 0.510 0.685 0.131 1.116 0.395 1.351 1.023 0.776 1.350

Dependent Variables
(Model 1 ­ Marginal Process)

Breaks

Innovation Variance
(Bond Yield or Spread)

Beta

Notes: this table summarizes breaks estimated through Qu­Perron (2007), applied on a system of two equations (Model 1 + Marginal Process (S1) for either 10yr Government
Bond Yields or Yield Spreads, as indicated). Sup likelihood ratio tests of no breaks against the alternative of two breaks reject the null of no breaks in all cases (size of the tests is
10%). Samples. Germany: from 1960.1 (10yr gov bond yield), from 1960.3 (yield spread); Spain: from 1980.4 (10yr gov bond yield), from 1980.4 (yield spread). France: from 1970.1
(10yr gov bond yield), from 1970.3 (yield spread).

Average Term Spread

Germany

Spain

France

Table 5a. Two Breaks in Innovation Variances and Models Coe¢ cients, Systems of

Equations (1)
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K
1st

Subsample
2nd

Subsample
3rd

Subsample
1st

Subsample
2nd

Subsample
3rd

Subsample
1st

Subsample
2nd

Subsample
3rd

Subsample

growth(t,t+1) 10yr Government 2 2000.4 2005.3 0.423 0.052 0.033 0.016 1.121 0.847 0.147 1.647 1.408
growth(t,t+2) Bond Yield 2000.3 2005.3 0.428 0.049 0.037 ­0.009 0.676 0.976 0.144 1.587 1.408
growth(t,t+3) 2000.3 2005.2 0.428 0.052 0.049 ­0.019 0.632 0.632 0.144 1.605 1.401
growth(t,t+4) 1995.2 2000.3 0.480 0.214 0.049 ­0.186 2.230 1.507 ­0.054 0.727 1.498

growth(t,t+1) Yield Spread 2 2000.4 2005.3 0.502 0.034 0.221 ­0.071 1.184 1.452 0.147 1.647 1.408
growth(t,t+2) 2000.3 2005.3 0.508 0.038 0.230 0.001 0.757 1.533 0.144 1.587 1.408
growth(t,t+3) 2000.2 2005.2 0.514 0.038 0.225 ­0.049 0.405 1.694 0.135 1.567 1.401
growth(t,t+4) 2000.2 2005.1 0.514 0.040 0.217 ­0.139 0.275 1.897 0.135 1.575 1.401

growth(t,t+1) 10yr Government 3 1994.2 2005.2 0.468 0.066 0.066 0.754 ­0.100 0.734 ­0.322 0.358 0.468
growth(t,t+2) Bond Yield 1994.2 2005.2 0.470 0.067 0.065 0.742 ­0.173 0.859 ­0.322 0.358 0.468
growth(t,t+3) 1994.2 2005.1 0.474 0.066 0.063 0.711 ­0.095 1.043 ­0.322 0.376 0.429
growth(t,t+4) 1994.2 2004.4 0.473 0.067 0.064 0.671 ­0.070 1.348 ­0.322 0.389 0.401

growth(t,t+1) Yield Spread 2 1994.2 2005.3 0.708 0.109 0.228 0.861 ­0.033 0.901 ­0.322 0.344 0.505
growth(t,t+2) 1994.2 2005.2 0.708 0.111 0.223 0.861 ­0.084 1.078 ­0.322 0.358 0.468
growth(t,t+3) 1994.2 2005.1 0.708 0.112 0.220 0.865 ­0.082 1.255 ­0.322 0.376 0.429
growth(t,t+4) 1994.2 2004.4 0.708 0.115 0.230 0.759 ­0.067 1.731 ­0.322 0.389 0.401

growth(t,t+1) 10yr Government 2 1979.3 1987.3 0.085 0.748 0.139 1.506 1.298 0.215 0.089 0.591 1.268
growth(t,t+2) Bond Yield 1977.3 1984.2 0.092 0.679 0.157 1.259 1.519 0.281 0.145 ­0.160 1.333
growth(t,t+3) 1991.1 2000.1 0.304 0.138 0.099 1.123 ­0.378 0.587 0.311 1.427 1.399
growth(t,t+4) 1991.1 1999.3 0.304 0.146 0.111 1.053 ­0.420 0.596 0.311 1.495 1.347

growth(t,t+1) Yield Spread 2 1973.2 1984.4 0.215 1.494 0.185 1.395 1.888 0.262 0.063 0.106 1.322
growth(t,t+2) 1971.4 1984.4 0.153 1.380 0.186 1.791 1.608 0.329 ­0.109 0.200 1.322
growth(t,t+3) 1971.4 1984.4 0.153 1.380 0.185 1.746 1.449 0.368 ­0.109 0.200 1.322
growth(t,t+4) 1991.1 1999.3 0.774 0.103 0.272 1.130 ­0.512 0.685 0.311 1.495 1.347

USA

Notes: this table summarizes breaks estimated through Qu­Perron (2007), applied on a system of two equations (Model 1 + Marginal Process (S1) for either 10yr Government
Bond Yields or Yield Spreads, as indicated). Sup likelihood ratio tests of no breaks against the alternative of two breaks reject the null of no breaks in all cases (size of the tests is
10%). Samples. Italy: from 1980.3 (10yr gov bond yield), from 1980.3 (yield spread); UK: from 1978.1 (10yr gov bond yield), from 1978.3 (yield spread); USA: from 1964.3 (10yr gov
bond yield), from 1965.1 (yield spread).

Dependent Variables
(Model 1 ­ Marginal Process)

Breaks

Innovation Variance
(Bond Yield or Spread)

Beta Average Term Spread

Italy

UK

Table 5b. Two Breaks in Innovation Variances and Models Coe¢ cients, Systems of

Equations (2)
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Germany Spain

Notes: dotted lines and dashed lines denote two-standard-error con�dence bands and OLS point estimates.

Figure 1a. Time-Varying Spread Coe¢ cients (Smoothed Estimates)
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France Italy

Notes: dotted lines and dashed lines denote two-standard-error con�dence bands and OLS point estimates.

Figure 1b. Time-Varying Spread Coe¢ cients (Smoothed Estimates)
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UK USA

Notes: dotted lines and dashed lines denote two-standard-error con�dence bands and OLS point estimates.

Figure 1c. Time-Varying Spread Coe¢ cients (Smoothed Estimates)
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Germany

Spain

France

Notes: black solid/dashed lines denote real-time data estimates and two-standard-error con�dence bands;

gray solid/dashed lines denote estimates on the last vintage of data and corresponding two-standard-error

con�dence bands.

Figure 2a. Real-Time Estimates of � and Informativeness, Moving Regressions
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Italy

UK

USA

Notes: black solid/dashed lines denote real-time data estimates and two-standard-error con�dence bands;

gray solid/dashed lines denote estimates on the last vintage of data and corresponding two-standard-error

con�dence bands.

Figure 2b. Real-Time Estimates of � and Informativeness, Moving Regressions
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Figure 3a. Real-Time Estimates of RMSFEs, Recursive Regressions
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Figure 3b. Real-Time Estimates of RMSFEs, Recursive Regressions
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