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Abstract

We propose a method to estimate cyclical DSGE models using the information provided by a
variety of filtering methods. We treat cyclical data obtained with different filtering methods as
contaminated measurement of the relevant model-based quantities and estimate structural and
non-structural parameters jointly using an unobservable component structure. We emply simu-
lated data to illustrate the properties of the procedure relative to an approach where estimates
the structural parameters are obtained with the cyclical data produced by just one filtering
method. We revisit the role of money in the trasmission of monetary business cycles using the
suggested technique.
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1 Introduction

DSGE models have become the paradigm for policy analyses in academic and policy circles over the

last 10 years. Relative to earlier structures, current models are of larger scale and feature numerous

frictions on the real and nominal side of the economy that help to closely replicate the dynamic

responses that structural VARs produce. Also, while a few years ago it was standard to informally

calibrate DSGE models, increased computing power, longer time series and recent development in

system-wide estimation methods allow researchers to routinely employ a variety of full information

techniques in structural estimation exercises (see, e.g., Smets and Wouters (2003), Ireland (2004),

Rabanal and Rubio Ramirez (2005) among many others).
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Despite the increased popularity, structural parameter estimation faces important conceptional

and numerical problems. For example, as emphasized by Canova (2007b), full information classical

estimation makes sense only if the model is assumed to be the data generating process (DGP)

of the observables, up to a set of serially uncorrelated measurement errors, an assumption which

is hard to entrain unless the model is augmented with ad-hoc dynamics. Furthermore, there are

abundant population identification problems (see Canova and Sala (2006)), numerical difficulties

are widespread, singularities are often important (there are typically less shocks than endogenous

variables in the model) and errors-in-variables are present (the variables in the model do not often

have a direct counterpart in the data). Finally, the vast majority of the models used in the literature

are time invariant and are intended to explain only the cyclical portion of the data fluctuations while

actual data includes, at a minimum, growth components, cyclical fluctuations and high frequency

noise, all of which may be subject to breaks and other forms of slowly moving variations.

When faced with the problem of fitting stationary cyclical DSGE models to the data, applied

investigators typically select a subsample where time invariance is more likely to hold, filter the

raw data with an arbitrary statistical device, and treat the filtered data as the relevant measure of

stationary cyclical fluctuations. Occasionally, one find authors, see e.g. Kehoe (2007), suggesting

that filting should be applied to both actual data and data simulated by the model but, to the

best of our knowledge, such an approach had, so far, no followers in the estimation literature.

Alternatively, a unit root in total factor productivity is generally assumed and the data filtered

using a model-driven transformation.

Both statistical and model-based filtering are problematic. For example, while the profession

largely agrees that a cyclical model should explain fluctuations with 8-32 quarters average peri-

odicities, there is little agreement on how to obtain these fluctuations from the data and only

a partial understanding of the consequences that incorrect or suboptimal filtering induce. It is

common use linearly detrended or first differenced data as input in the estimation process, but,

as shown in Canova (1998), such transformations do not extract fluctuations with the required

periodicities. A band pass (BP) filter which, with infinite amount of data can exactly isolate the

fluctuations of interest, it is typically discarded in the estimation literature because its two-sided

nature may change the timing of the data information - a similar argument is made also for Hodrick

and Prescott (HP) filtered data. In addition, when the sample is short, all filters induce consid-

erable measurement errors in the estimates of the cyclical component. Therefore, samll sample

leakages and compressions may considerably add to the population misspecification issue. On the

other hand, model-driven filtering does not necessarily leave only cycles with 8-32 quarters average

periodicity in the data (see Canova (2008)) and, lacking information on the sources of non-cyclical

movements in the data, imposing a unit root in technology makes model-based analysis also subject

to considerable specification errors.
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Two additional important issues should be mentioned. While researchers filter each series

separately prior to estimation, theory suggests that there may be important commonalities in the

long run component of the data (a balanced growth path is often used as working assumption).

Hence, should economic theory or pragmatic considerations guide filtering? Moreover, while real

variables typically show long run drifts, nominal variables just display low frequency fluctuations.

Should we filter all the data or only real variables? Conversely, should we treat all the fluctuations

present in inflation and nominal interest rates, as relevant for parameter estimation or not?

If there were a simple and well understood statistical or economic criteria which can help us in

distinguishing bad from good approaches, these problems would not arise. However, nothing like

this is currently available. Since different researchers choose different methods to filter a portion (or

all) of the available data prior to estimation, and since measurement error with unknown properties

is introduced because of misspecification and small sample issues, the economic conclusions one

draws from the analysis may crucially depend on the preliminary transformation employed.

This paper proposes a method to estimate the structural parameters of a cyclical DSGE model

using noisy and missmeasured filtered data. The approach borrows ideas from the recent data-rich

environment literature (see Boivin and Giannoni (2005)) to set up an estimated structure where

vectors of data filtered with alternative procedures are treated as contaminated estimates of the

true cyclical component. We set up a signal extraction framework where the cyclical DSGE is the

unobservable factor; vectors of filtered data are treated as contaminated observable proxies, and the

parameters of the DSGE model are jointly estimated together with the non-structural parameters

using signal extraction techniques. This paper therefore complements those of Ferroni (2008), who

suggests ways to test trend specifications in DSGE models and compares the properties of one and

two step estimators of its structural parameters, and of Canova (2008), who study how to estimate

DSGE models when the cyclical component is not solely located at business cycle frequencies and,

conversly, the non-cyclical component may play an important role at these frequencies.

Our approach is advantageous in, at least, two respects. Since we do not have to arbitrarily

choose one filtering method prior to the estimation, we avoid specification errors of various sorts.

The only constraint to the number of filtered data vectors used in the estimation is the RAM

capacity of the computer. Furthermore, one-sided and two-sided filters of univariate or multivariate

nature can all be used in the estiamtion as long as the list of filters is sufficiently rich. Second,

if different filters have sufficiently different features, measurement error may have different time

series properties. Since the implicit information averaging our procedure produces may reduce

measurement error and eliminate its cyclicality, estimates of the cyclical components are more

reliable and precise, making parameter estimates and inference largely free of preliminary data

transformation biases.

We investigate the properties of our approach using experimental data f the typical length used
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in macroeconomics. We show that estimating the structural parameters of the model with just one

arbitrary filter typically induces large biases in the estimates and that these biases are considerably

reduced with our approach. We also show that in an unconditional forecasting exercise, the one step

ahead MSE produced by our approach is smaller than the MSE obtained with standard procedures

and that the biases we have noticed in the standard procedure translate in conditional forecasts

which are considerably distorted.

To show that these biases are not only statistically relevant but also economically important,

we revisit the role of money in transmitting monetary business cycles. The literature has largely

neglected the stock of money when studying monetary business cycles and Ireland (2004) has shown

that such an approach is, by and large, appropriate using US data, standard filtering techniques

and a maximum likelihood estimation setup. We show that when information produced by multiple

filters is used in the estimation, real balances statistically matter for the transmission of cyclical

fluctuations both directly and indirectly, through its effects on interest rate determination. Fur-

thermore, we show that the propagation of primitive shocks in the estimated economy differs from

the one obtain if only one data transformation is used.

The rest of the paper is organized as follows. Next section shows the problems one encounters

using a single filtering method to estimate the parameters of DSGE models. Section 3 presents our

approach and applies to experimental data. Section 4 examines the role of money in the monetary

business cycle. Section 5 concludes.

2 Filtering and structural estimation

To study why the current practice induces important measurement errors in the estimated cyclical

components and to investigate how these errors affect structural estimates, we simulated data

from a textbook New-Keynesian model (see Gali (2008)) where agents face a labor leisure choice,

production is carried out with labor, firms face an exogenous probability of price adjustments and

monetary policy is represented with a conventional Taylor rule. The log linearized equilibrium
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condition are:

λt = χt −
σc

1− h
(yt − hyt−1) (1)

yt = zt + (1− α)nt (2)

wt = −λt + σnnt (3)

rt = ρrrt−1 + (1− ρr)(ρππt + ρyyt) + vt (4)

λt = Et(λt+1 + rt − πt+1) (5)

πt = kp(wt + nt − yt + µt) + βEtπt+1 (6)

χt = ρχχt−1 + ιχt (7)

zt = ρzzt−1 + ιzt (8)

where kp =
(1−βζp)(1−ζp)

ζp
1−α

1−α+ǫα , λt is the Lagrangian on the consumer budget constraint, yt is

output, nt is hours, wt is the real wage and rt the nominal interest rate; zt is a technology shock,

χt a preference shock, vt is a monetary policy shock and µt a markup shock. The structural

parameters of the model are β, the discount factor, σc the risk aversion coefficient, h the coefficient

of consumption habit, 1−α the share of labor in production, σn the inverse of the Frish’s elasticity,

ǫ the elasticity among consumption varieties, ζp the probability of changing prices, while ρπ, ρy are

parameters of the monetary policy rule. In addition, the parameter vector includes ρr, ρχ, ρz the

autoregressive parameters, and σi, i = χ, z, µ, v, the standard deviation of the four shocks.

We assume that either the technology shock or the preference shock has two components (a sta-

tionary autoregressive and a unit root), while the monetary policy and the markup shocks are iid.

In the simulations we set β = 0.99;σc = 3.00;h = 0.70;σn = 0.70; ǫ = 7.0;α = 0.6; ρr = 0.2; ρπ =

1.30; ρy = 0.05; ζp = 0.8, and ρχ = 0.5; ρz = 0.8;σχ = 0.0112;σz = 0.0051;σv = 0.0010;σµ =

0.2060, while the standard deviation of the shock driving the unit root component is σz,nc = 0.0021

for the technology shock and σχ,nc = 0.0221 for the preference shock. The exact magnitude of the

standard deviations of these two shocks is relatively unimportant, because our parameters choice

implies that the non-cyclical component has limited importance at business cycle frequencies. We

simulate 1300 data points for four observable variables (yt, wt, πt, rt), discard 1030 initial observa-

tions to eliminate the effect of initial conditions, and use the last 100 for forecasting exercises. This

means that the sample size is 170.

Figure 1 presents the log-spectrum of filtered output and of filtered and unfiltered inflation for

the two DGPs when linear (LT), Hodrick and Prescott (HP), band pass (BP) and first difference

filtering (FOD) are used. In each box, the two vertical bars isolate the frequencies corresponding to

cycles of 8-32 quarters. Figure 2 reports the autocorrelation function of filtered output and filtered

and unfiltered inflation for the two DGPs.
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Figure 1: Log Spectra

Figure 1 clearly indicates that all filters imperfectly isolate the power of the series at business

cycles frequencies. This is due in part to the nature of the filters (in the case of LT, HP and FOD

filtering) and in part to small sample distortions. In general, the estimated cyclical component

will be contaminated by measurement errors no matter what filter is used and this error will not

only be located in the high frequencies of the spectrum. Consequently, the persistence and the

variability of the cyclical component is missmeasured, making estimates of income and substitution

effects and of the structural parameters regulating preferences and technologies generally distorted.

We show below that this is indeed the case. Figure 1 also shows that the spectral power of the

measurement error depends on filter used. Different amounts of measurement, in particular the low



2 FILTERING AND STRUCTURAL ESTIMATION 7

frequencies of the spectrum, imply that the persistence of the cyclical component is mismeasured

more with some fitlers than others (see figure 2) and this makes the magnitude of the distortions

in the estimated structrual parameters filter dependent.
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Figure 2: Autcorrelation functions

Finally, figures 1 and 2 demonstrate that inflation is a highly persistent but stationary variable,

even when shocks have a unit root component, but the simulated series have about as much power

at cyclical as non-cyclical frequencies. Hence, fitting the model to filtered or unfiltered inflation

will make a difference for structural parameter estimation except, perhaps, after linear filtering.

To show that indeed the measurement error produced by filtering severely distorts our ability
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Parameter Distribution Mean Standard Deviation

σc Γ(20, 0.1) 2.00 0.45
σn Γ(20, 0.1) 2.00 0.45
h B(10, 3) 0.76 0.11
α B(3, 8) 0.27 0.13
ǫ N(6, 0.5) 6.00 0.50
ρr B(10, 6) 0.71 0.09
ρπ N(1.5, 0.2) 1.50 0.20
ρy N(0.4, 0.2) 0.40 0.20
ζp B(6, 6) 0.50 0.14

ρχ B(10, 6) 0.71 0.09
ρz B(10, 6) 0.71 0.09
σχ Γ−1(10, 20) 0.0056 0.0020
σz Γ−1(10, 20) 0.0056 0.0020
σv Γ−1(10, 20) 0.0055 0.0020
σµ Γ−1(10, 20) 0.0056 0.0020

Table 1: Prior Distribution for the structural parameters.

to understand the features of the true economy, that the amount of distortions depend on the filter

used and on whether some or all variables are filtered, we take the two sets of experimental data we

have constructed and estimate the structural parameters after passing the raw data with LT, HOP,

BP and FOD filters. Estimation is conducted using Bayesian methods. We choose loose priors for

all the parameters (see table 1) and, to give the best chance to the routine, start estimation at the

true parameter values. Posterior estimates are obtained with a random walk Metropolis algorithm,

where the jumping variable has a t-distribution with 5 degrees of freedom and variance is tuned up

to have an acceptance rate of about 30 percent for each filtering approach. Half a million draws

were made for each filtered/DGP combination convergence was checked with standard CUMSUM

graphs and achieved after about 250000 iterations. We keep one out of hundred of the last 100,000

draws to compute statistics of the posterior distribution.

Table ?? reports the median and the standard deviation of the posterior of each of the structural

parameters. The top panel refers to the situation when output, inflation, real wage and the nominal

interest rate are independently filtered prior to estimation. The bottom panel to the case when

only real variables are independently filtered. We only show results obtained when the preferences

shock has two components, since those obtained with the other DGP are roughly similar.

The table shows that there are important estimation biases and the magnitude of this biases

can be as large as 100 percent. Since measurement error has important low frequency components,

the persistence of the shocks is typically overestimated and the variability of the shocks is typically
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Filter LT HP FOD BP Factoru Factorr

true Median (s.e.) Median (s.e.) Median (s.e.) Median(s.e.) Median (s.e.) Median(s.e.)

All filtered
σc 3.00 1.63 (0.09) 1.70 (0.14) 1.98 (0.08) 1.87 (0.10) 1.58 (0.11) 2.08 (0.20)
σn 0.70 1.56 (0.07) 1.63 (0.10) 1.64 (0.07) 1.49 (0.06) 0.67 (0.16) 0.49 (0.09)
h 0.70 0.64 (0.02) 0.65 (0.02) 0.49 (0.02) 0.64 (0.02) 0.60 (0.04) 0.77 (0.10)
α 0.60 0.32 (0.02) 0.20 (0.04) 0.52 (0.02) 0.15 (0.02) 0.41 (0.03) 0.48 (0.02)
ǫ 7.00 3.99 (0.13) 4.09 (0.14) 4.07 (0.13) 3.85 (0.13) 6.21 (0.12) 6.38 (0.12)
ρr 0.20 0.44 (0.05) 0.32 (0.03) 0.53 (0.02) 0.44 (0.04) 0.31 (0.07) 0.26 (0.05)
ρπ 1.30 2.01 (0.07) 2.05 (0.08) 1.68 (0.05) 2.03 (0.07) 1.50 (0.02) 1.50 (0.05)
ρy 0.05 0.11 (0.02) 0.15 (0.02) 0.11 (0.00) 0.18 (0.02) 0.43 (0.03) 0.21 (0.02)
ζp 0.80 0.92 (0.03) 0.93 (0.03) 0.87 (0.03) 0.94 (0.03) 0.81 (0.02) 0.79 (0.02)
ρχ 0.50 0.98 (0.03) 0.98 (0.03) 1.00 (0.03) 0.99 (0.03) 0.93 (0.01) 0.85 (0.01)
ρz 0.80 0.92 (0.03) 0.94 (0.03) 0.92 (0.03) 0.95 (0.03) 0.62 (0.02) 0.59 (0.04)
ωχ 1.10 0.19 (0.03) 0.25 (0.04) 1.34 (0.45) 0.20 (0.04) 0.86 (0.16) 2.36 (0.48)
ωz 0.57 0.64 (0.08) 0.59 (0.08) 3.67 (0.28) 0.19 (0.03) 0.66 (0.23) 0.47 (0.12)
ωv 0.12 0.05 (0.01) 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.08 (0.01) 0.09 (0.01)
ωµ 20.64 6.42 (0.36) 11.25 (0.82) 6.35 (0.23) 3.77(0.23) 5.17 (0.64) 6.38 (1.00)

Real variables filtered
σc 3.00 1.92 (0.07) 1.89 (0.07) 1.93 (0.07) 1.96 (0.09) 1.98 (0.22) 1.73 (0.26)
σn 0.70 2.10 (0.08) 2.11 (0.08) 2.04 (0.08) 2.03 (0.09) 0.68 (0.17) 0.69 (0.09)
h 0.70 0.58 (0.02) 0.58 (0.02) 0.52 (0.02) 0.62 (0.02) 0.68 (0.02) 0.76 (0.03)
α 0.60 0.48 (0.02) 0.47 (0.02) 0.52 (0.02) 0.43 (0.02) 0.66 (0.04) 0.57 (0.04)
ǫ 7.00 3.71 (0.13) 4.21 (0.15) 4.00 (0.13) 3.73 (0.15) 6.27 (0.10) 6.37 (0.12)
ρr 0.20 0.53 (0.04) 0.55 (0.05) 0.42 (0.01) 0.19 (0.03) 0.44 (0.03) 0.33 (0.09)
ρπ 1.30 1.26 (0.05) 1.32 (0.05) 1.01 (0.03) 1.22 (0.04) 1.53 (0.04) 1.53 (0.05)
ρy 0.05 -0.17 (0.01) -0.04 (0.02) -0.00 (0.00) -0.14 (0.02) 0.30 (0.06) 0.17 (0.05)
ζp 0.80 0.76 (0.02) 0.76 (0.03) 0.68 (0.02) 0.72 (0.02) 0.82 (0.05) 0.84 (0.04)
ρχ 0.50 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 0.96 (0.01) 0.96 (0.01)
ρz 0.80 0.84 (0.03) 0.90 (0.03) 0.87 (0.03) 0.85 (0.03) 0.95 (0.02) 0.95 (0.01)
σχ 1.10 0.09 (0.01) 0.21 (0.05) 3.07 (0.14) 0.16 (0.02) 1.07 (0.20) 1.66 (0.21)
σz 0.57 0.32 (0.04) 0.25 (0.03) 6.55 (0.24) 0.12 (0.01) 0.33 (0.07) 0.49 (0.21)
σmp 0.12 0.07 (0.01) 0.06 (0.01) 0.05 (0.01) 0.06 (0.01) 0.08 (0.01) 0.09 (0.01)
σµ 20.64 13.29 (0.64) 16.11 (1.03) 8.03 (0.26) 12.70 (0.63) 5.36 (0.88) 6.94 (1.02)

Table 2: Parameters Estimates using different filters, preference shocks with two components
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underestimated and, in some cases, by quite a lot (see e.g. the monetary and the markup shocks).

Furthermore, as expected, there are parameters whose posterior distribution depend on the pre-

liminary filtering one consider (see e.g. the coefficient on inflation in the Taylor rule ρπ, and the

share of labor in production α in the first panel). Finally, distortions are generally larger when

only real variables are filtered. This happens because the combination of filtered and filtered data

” unbalances” the likelihood - some equations are more misspecified than others. Since likelihood

based methods produce parameters estimates which minimizes the largest discrepancy between the

model and the data, biases tend to be larger in this case.

How could eliminate the distortions induced by imperfect filtering? One option is to increase the

sample size and consider only filters, which at least asymptotically isolate the freqnecy of interest.

However, even if longer samples were available, which is not often the case, problems will still occur

because time invariance will be difficult to assume. Alternatively, one could choose a non-symmetric

non-stationary version of a band pass filter (as suggested by Christiano and Fitzgerald (2003)),

which is able to isolate much better the frequencies of interest, even in small samples. However,

since band pass filters are two-sided, they may change the timing of information in the filtered data,

and distort the properties of estimated parameters and the transmission of shocks. Furthermore,

the Christiano and Fitzgerald filter is asymmetric and may induce phase shifts, significantly altering

the cross-covariance structure of the data with unpredictable consequences on parameter estimates.

One final possibility is to design one-sided filters which minimizes the leakage and the compression

at the frequencies of interest in small samples. While possible in theory, such an option is not

currently available to the applied investigator. All in all, none of these alternatives seem viable.

3 The idea of the paper

Our suggestion is to use the information contained in the cyclical data obtained with different

filters to try to average out, as much as possible, the low frequency component of the measurement

error. In other words, rather than arbitrarily selecting one filter and estimating the model with

the resulting filtered data, we treat the cyclical data extracted with various filtering methods as

a contaminated estimate of an unobservable cyclical component and use the information provided

by different filters jointly in the estimation of the structural parameters. As long as the measure-

ment error is idiosyncratic across filtering methods, less distortions and more precise estimates of

the relevant cyclical features of the economy should result. In this sense our approach builds on

ideas of Boivin and Giannoni (2005), who suggest that a data rich environment can help to esti-

mate the structural parameters of a DSGE model and more precisely forecast out-of-sample. Our

implementation, however, has some important differences.
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Let the linearized solution of a cyclical DSGE model be of the form:

x1t = RR(θ)x2t−1 + SS(θ)x3t (9)

x2t = PP (θ)x2t−1 +QQ(θ)x3t (10)

x3t+1 = NN(θ)x3t + ιt+1 (11)

where PP,QQ,RR,SS are time invariant matrices which are functions of the vector of structural

parameters θ = (θ1, . . . , θk), x2t = x̃2t − x̄2 includes predetermined states, xt = x̃1t − x̄1 the

endogenous variables, x3t the exogenous shocks and x̄i, i = 1, 2 are the steady states of x̃1t and x̃2t.

We let xmt = S[x2t, x1t]′, be a n×1 vector where S is a selection matrix picking, out of x1t and x2t,

those variables which are observable and interesting from the point of view of the analysis. Even

though we suppress the dependence of xmt on θ, it should be understood that that model-based

data is in fact conditional on the choice of θ.

Let xit be the vector of filtered observable time series obtained with method i = 1, 2, ...g and let

xdt = [x1t , x
2
t , . . . , x

g
t ]
′. Assume the following structure:

xdt = λ0 + λ1x
m
t + ut (12)

where λ0 is a ng × 1 vector of constants, λ1 a ng × n matrix of non-structural parameters and ut

is a ng × 1 vector of measurement errors. For estimation purposes, we normalize the n × n block

λ11 = I so that the remaining blocks of the matrix λ1 can be interpreted as loadings relative to

those of the first method. Joint estimation of the structural parameters θ and the non-structural

parameters λj is now possible because (9)-(10)and (12) represent a state space system with the

latter being a measurement equation and the former two, state equations. Specifically, equations

(9)-(11) and equation (12) can be cast into the state space system

st+1 = Fst +Gat+1 (13)

ot = Hst + ηt (14)
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by setting

st+1 =
(
y1t y2t zt+1

)′

F =




0 RR SS
0 PP QQ
0 0 NN





G =
(

0, 0, I
)′

at+1 = ιt+1

ot =
(
xit/σ

i
x − λ

i
0, i = 1, 2, . . . , g

)′

H =
(
λ1S 0

)

λ1 =
(
λi1, i = 1, 2, . . . , g

)′

ηt =
(
uit, i = 1, 2, . . . , g

)′

The likelihood of (13)-(14) can be computed with the Kalman filter. In our context the vector of

parameters is ν = (θ, λi0, λ
i+1
1 , σja), σkη , i = 1, 2, . . . , g; j = 1, 2, . . . , n; k = 1, . . . , ng, which includes

both structural and non-structural parameters.

If Bayesian estimation is preferred, the non-normalized posterior distribution of ν, can be ob-

tained with Monte Carlo Markov Chain simulators. For example, one can employ the following

Random Walk Metropolis algorithm, which appears to give reasonable results in estimation. Start-

ing from an initial value νℓ−1, given a Σ, and a prior g(ν):

1. Draw a shock vector υ from t(0,Σ, 5) and construct a candidate ν∗ = νℓ−1 + υ

2. Solve the model using ν∗; if the solution is indeterminate or no solution is found set L(ν|o) = 0.

Otherwise, evaluate the likelihood f the observales ot at ν∗ L(ν∗|o) with the Kalman filter.

3. Calculate ğ(ν∗|o) = g(ν∗)L(ν∗|o) and the ratio MR∗ = ğ(ν∗|o)
ğ(νℓ−1|o)

4. Draw ς from U [0, 1]; if MR∗ > ς set νℓ = ν∗, otherwise set νℓ = νℓ−1

Iterated a large number of times, the algorithm ensures the sample (νL̄, νL̄+1, . . . , ) for an

appropriately chosen L̄ is a draw from the target distribution that we need to sample from (for

further details see Canova (2007a)).

In (12) different estimates obtained with different filters are taken to be contaminated measures

of the cyclical component. They are contaminated in two senses: they introduce fluctuations which

are non-cyclical according to the definition we have used; they compress the power of the spectrum

of the series at cyclical frequencies. The amount of information they contain for the model relevant
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concepts of cyclical fluctuations is measured with the vector λ0 and the matrix λ1. Ideally, λ0 is a

vector of zeros and λ1 a matrix with the identity in each n× n block, so that each measure is an

unbiased and perfectly correlated although noisy signal of the true cyclical component. In general,

we expect either λi0 �= 0 or λi+11 �= I, or both, for some or all i’s. Since we have normalized λ11,

estimates across i gives us an idea of the amount of correlation distortions each method displays

relative to the first.

This setup is advantageous in, at least, two respects. First, since we do not have to arbitrar-

ily choose one filtering approach prior to the estimation, we avoid specification errors. In fact,

our approach is designed to use multiple vectors of cyclical data obtained with different filtering

approaches jointly as observables in the estimation; the only constraint to the number of these

vectors is the RAM capacity of the computer. Furthermore, the output of one-sided and two-sided

filters as well as the output of univariate and multivariate procedures can all used as observables

for estimation, as long as the list of filters is sufficiently rich. Second, if different filters have

sufficiently different features, measurement error may have different time series properties. Since

the implicit information averaging that our procedure produces may reduce measurement error

and eliminate part of its cyclicality, estimates of the cyclical components will be more reliable,

parameter estimates better shielded from filtering errors and inference ore robust.

It is important to stress that, in this paper, we make two important assumptions. First, we

assume that the model generating ymt is correctly specified, that is, there are no missing variables

or shocks. When this is not the case, the interpretation of the λ’s becomes more difficult since

in this case (12) simply represents a flexible specification to extract the information contained in

a variety of data sets. Second, we assume that the cyclical and the non-cyclical components are

uncorrelated. While the majority of models used in the literature employ this assumption, such a

correlation may introduce additional sources of biases, which are neglected in this paper.

The literature is largely silent about the issues we address in this paper. Cogley (2001) and

Gorodnichenko and Ng (2007) are concerned with the problem of estimating the structural param-

eters of a cyclical DSGE when the trend specification is incorrect, but they do not investigate what

are the consequences of small sample filtering nor their implications for the structural estimates.

Giannone et al. (2006) emphasize that if the variables of the model are measured with error, the

solution has a natural factor structure and exploit this feature to compare responses obtained from

VAR and factor models. Rather then considering a factor structure for the endogenous variables in

terms of the states, we construct an estimable structure where a vector of filtered observable data

has a factor structure in terms of a subset of the variables of the model. However as in Giannone

et al., we emphasize that important measurement errors with low frequency components may exist.

The paper which is closest in spirit to ours is Boivin and Giannoni (2005). Their main point is

that the model variables do not have an exact counterpart in the real world and that some external
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indicators to the model may have important information for interesting variables. The point here

is somewhat similar. The cyclical component of the model does not have an exact counterpart in

the data because none of the existing filtering approaches is able to exactly extract fluctuations

with 8-32 quarters average periodicity. Moreover, different cyclical vectors may have idiosyncratic

error components and this error can be averaged out with our signal extraction method.

3.1 How does the procedure fares with simulated data?

We estimate the structural parameters of the model using the suggested approach and the same

experimental data used in section 2. As input in our procedure, we employ the vector of LT, HP

and FOD filtered data. Although this is not the best choice, as LT and HP filtered data show

considerable similarities, and the procedure works best if the vector of filtered data one select

are somewhat idiosyncratic in their spectral properties, it clearly illustrates the features of the

procedures, even in this less than ideal situation. Hence, the vector of observable variables is

12 × 1 (the model produces implications for four variables and there are four filtering methods).

We use the same Bayesian approach used in section 2, assuming the same priors on the structural

parameters presented in table 1 and loose priors on the non-structural parameters entering (12).

In particular, we assume that the prior for each element of λ0 is normally distributed, centered at

zero with variance equal to 0.5; the prior for the free diagonal elements of λ1 is normal, centered

at 1 with variance 0.5: and the prior for the standard deviation of the ut’s is inverted gamma with

mean equal to 0.0056 and variance equal to 0.002.

We consider two specifications: one where the non-structural parameters are filter and series

specific (in this case there are 28 non-structural parameters to be estimated, in addition to the

15 structural ones) and another where the constants and the loadings in (12) are common across

series for each filter (in this case, there are 16 non-structural parameters). We refer to the first

specification as the ”unrestricted” factor model; the second one to the ”restricted” factor model.

The last two columns of table ?? present the posterior median and the posterior standard devi-

ation for the structural parameters obtained with the two factor specifications, when the preference

shock has two components. In general, the biases present in the first four columns of the table have

been reduced and/or have disappeared: the economic parameters are all better estimated with rea-

sonably small standard deviation and the auxiliary ones, even though still biased, are closer to the

true ones than those obtained with standard approaches. Note that, at least when all variables are

filtered, the persistence of the stationary preference shocks is now estimated to be lower and, as a

consequence, the distortion in the income and substitution effects present in the estimated param-

eters reduced. When only real variables are filtered the reduction is negligible, primarily because

inflation and the nominal rate which are unfiltered are the most persistent and enter three times

among the observables. The variability of the structural shocks is also better estimated in both
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frameworks except for the markup shocks, but this bias has more to do with the weak identification

of this parameter than with the features of either procedure.

To see how these estimates compare with the true ones and with those obtained with standard

approaches in terms of economically meaningful statistics, we have computed the unconditional

autocorrelation function of the cyclical components of output, real wages, inflation, and the nominal

rate, where by this we mean the component generated by the non-unit root shocks when the

posterior median estimates of the parameters obtained when all variables are filtered are used.

When we examine traditional approaches, we only report the correlation structure of LT and FOD

filtered data to make the plots readable - the plots produced by HP and BP are similar.
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Figure 3: Autocorrelation of cyclical components
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Figure 3, which plots the autocorrelation functions, reinforce previous conclusions. With both

LT and FOD filtered data, the estimated autocorrelation functions are too persistent relative to the

true ones. The same is true also for the autocorrelation function produced by the unrestricted factor

model, except for the nominal rate. Here the large dimensionality of the parameter space relative

to the size of data set plays a crucial role in determining the quality of the results. In contrast,

the autocorrelation function produced by the mean estimates of the restricted factor model decays

much faster for all series and, except for output, we can not reject the hypothesis that the true and

the estimated autocorrelation functions are the same.

Our approach also helps in reproducing the unconditional standard deviations of the series

better. Table 3, which reports these statistics, in fact indicates that both factor models average

out a good part of the measurement error that standard procedures introduce. Once again, the

restricted factor model is preferable to the unrestricted one.

Series True LT FOD Factoru Factorr

Output 0.25 0.54 3.70 0.33 0.32
Real wage 0.17 0.21 1.58 0.11 0.16
Inflation 0.11 0.13 1.23 0.11 0.06

Nominal rate 0.17 0.21 1.59 0.11 0.16

Table 3: Standard deviation of the cyclical components using posterior mean estimates of the
parameters Simulated data

The generally good performance of the restricted model is also confirmed when looking at the

responses of the four observables to the four structural shocks. Figure 4 presents the responses pro-

duced with the true parameters and those generated with the posterior median estimates obtained

with the restricted factor model. Overall, both the shape and the persistence of the conditional

responses are well captured. There are a few cases where the impact sign is wrong (see e.g. the

response of the real wage to technology shocks or the response of inflation to monetary shocks) but

differences are not large a-posteriori. Also, in a few cases the magnitude of the responses is not

well estimated but with 150 data points, this is far from surprising.
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Figure 4: Impulse responses

To gain further evidence on the properties of the estimated cyclical components obtained with

traditional methods and with the approach we suggest, we have also conducted two forecasting

exercises: an unconditional and a conditional one. In the first case, we compute a sequence of one

step ahead forecast errors for output and inflation, when we take as parameter values the posterior

median estimates obtained using LT and FOD filtered data and our unrestricted and restricted

factor approaches, setting all the shocks in the forecasting period to zero. The MSE is computed

over 100 forecasting periods, when no updating of the parameters in the forecasting sample is

performed, and appears in table ??.

Figure 5 instead traces out the one-step ahead path of output and inflation that would have

obtained with the posterior median estimates of the parameters when monetary shocks were drawn

so as to keep the nominal interest rate fixed over the forecasting path. That is, we allow the nominal

interest rate to endogenously react to output and inflation but make sure that the monetary shocks
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Series LT FOD Factoru Factorr

Output 0.1049 0.2054 0.0340 0.0058
Inflation 0.3501 0.3814 0.5317 0.3407

Table 4: Mean Square Error (MSE) of the unconditional forecasts. Scale 10−3.

we draw are such that the nominal rate is constant over the forecasting path and equal to the value

taken at the date prior to the forecasting period (time 0 in the figure).
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Figure 5: One step ahead conditional forecasts

Table ?? and the Figure 5 indicate that the differences in the median estimates lead to important

differences in forecasting performance. The restricted factor model unconditionally forecasts one-

step ahead the cyclical component of output much better than any standard approach and even the

unrestricted specification is superior to procedures which first filter, then estimate the parameters

and then forecast. For inflation, the results are less clear cut, but the restricted factor specification

is at least as good as the LT and FOD filtered specifications. The conditional forecasting exercise

shows that the bias produced by traditional procedures translate in conditional output forecasts

which are consistently above those produced by our approach and that the differences are large
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and statistically significant. For inflation the differences with standard methods are less evident

but, for example, one can clearly see that the cyclicality of the one step ahead conditional inflation

series is much smaller with the restricted factor specification than with standard approaches and

that differences are, at times, large.

In sum, the biases that a standard procedure induces in parameter estimates have important

consequences for our understanding of both the autocovariance properties of the cyclical component

of the data and of the conditional responses to shocks. Overall, both statistics appear to be

much better reproduced with the specification we suggest and this should increase the confidence

that those interested in providing policy advises with estimated DSGE models should have in our

procedure. The conditional and unconditional forecasts produced by standard approaches inherit

and magnify parameter biases providing a distorted picture of the cyclicality of, e.g., actual inflation.

These problems are either resolved or considerably reduced with our suggested approach.

4 Does money matter in transmitting monetary business cycles?

To show that the additional information our procedure uses is relevant for understanding economic

phenomena, we reconsider the role of money in transmitting monetary business cycles. The majority

of the monetary models nowadays used in the policy and academic literature attributes a minimal

role to the stock of money. In the majority of the cases these models make no reference whatsoever

to monetary aggregates, and when they do, they use a specification where a money demand function

determines how much money needs to supplied, given predetermined levels of output, inflation and

the nominal rate. As a consequence, changes in the nominal (or real) quantity of money play no

direct or indirect role in shaping the dynamic behavior of output and inflation.

Ireland (2004) has constructed a general specification in the class of textbook New Keynesian

models, where real balances may have a role in affecting the dynamics of output and inflation.

He estimated the relevant parameters by likelihood techniques using post 1980 US data and found

evidence supporting the current practice. To construct the likelihood of his cyclical model, he first

transforms the actual data taking away a separate linear trend from per capita GDP and per-capita

real balances and demeaning inflation and the nominal interest rate.

In this section, we conduct a similar exercise using post 1959 US data and the cyclical versions of

real per-capita output, real par-capita money balances, inflation, and nominal rate series obtained

with 8 different filtering procedures. As a benchmark, we also estimate the model using Ireland’s

preferred transformation using the same post 1959 sample.
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4.1 The model economy

The model we employ is similar to the one considered by Ireland (2004), except that it also permits

real balances to play an indirect role, via its effects on interest rate determination. Relative to the

model we have used in section 2, we allow the real stock of money to potentially matter for the

determination of the output and inflation; consider pricing frictions in the form of adjustment costs

to changing prices rather than with a standard Calvo setup; and set the habit parameter to zero.

Since the economy is quite standard we only briefly describe its features. There is a rep-

resentative household, a representative final good producing firm, a continuum of intermediate

goods-producing firms producing commodity i ∈ [0, 1] and a monetary authority. At each t the

representative household maximizes

Et

∑

t

βtχt[U(ct,
Mt

ptet
)− ηnt] (15)

where 0 < β < 1, η > 0, subject to the sequence of budget constraints

Mt−1 + Tt +Bt−1 +Wtht +Dt = Ptct +
Bt

Rt
+Mt (16)

where ct is consumption, nt are hours worked, pt is the price level, Mt are nominal balances, Wt is

the nominal wage and Bt are one period nominal bonds with gross nominal interest rate Rt; Tt are

lump sum nominal transfers made by the monetary authority at the beginning of each t, and Dt

nominal dividends distributed by the intermediate producing firms. χt and et are disturbances to

preferences and the money demand whose properties will be described below. Let mt ≡
Mt

pt
denote

real balances and πt ≡
pt

pt−1
the period t gross inflation rate.

The representative final good producing firm uses yit units of intermediate good i, purchased

at the price pit to manufacture yt units of final goods according to the constant return to scale

technology yt = [
∫ 1
0 (yit)

(ǫ−1)/ǫdi]ǫ/(1−ǫ) with ǫ > 1, where ǫ is the constant price elasticity of demand

for each intermediate good. Profit maximization produces demand functions

yit = (
pit
pt

)−ǫyt (17)

Competition within the sector implies that pt = (
∫ 1
0 (p1t )

1−ǫdi)1/(1−ǫ)

The intermediate good producing firm i, hires nit unit of labor from the representative household

to produce yit of intermediate good using the production function yit = ztn
i
t, where zt is an aggregate

productivity shock. Intermediate goods substitute imperfectly for one another in producing finished

goods. Hence intermediate firms can set the price of their good but must satisfy (17) at the chosen

price. We assume a quadratic cost in adjusting prices, measured in finished goods. The fucntional



4 DOES MONEY MATTER IN TRANSMITTING MONETARY BUSINESS CYCLES? 21

form we use is
φ

2
(
pit

πspit−1
− 1)2yt (18)

where φ > 0 and πs measures steady state inflation. Optimal prices are chosen to maximize

E
∑

t

βtχt[U1(ct,
Mt

ptet
)](
Di

t

pt
) (19)

subject to (17), where βtχtU1(ct,
Mt

ptet
) measures the marginal utility value to the household of an

additional unit of profits t and real dividend are

Di
t

pt
= (
pit
pt

)1−ǫyt − (
pit
pt

)−ǫ(
wtyt
zt

)−
φ

2
(
pit

πpit−1
− 1)2yt (20)

The monetary authority sets the nominal interest rate according to

Rt = Rρr
t−1y

(1−ρr)ρy
t−1 π

(1−ρr)ρπ
t−1 ∆M

(1−ρr)ρm
t vt (21)

where ρr, ρy, ρπ, ρm ≥ 0 are parameters and vt is a monetary policy shock.

The law of motion of the disturbances of the model dt = (χt, et, zt, vt) is represented as log dt =

d̄+N log dt−1+ ιt, where N is a diagonal matrix with entries ρχ, ρe, ρz, 0, respectively, while Σ, the

covariance matrix of ιt is diagonal with entries σ2χ, σ
2
e , σ

2
z , σ

2
v. In a symmetric equilibrium all the

firm make identical choices so yit = yt, n
i
t = nt, p

i
t = pt, D

i
t = Dt.

Log-linearizing the model around the steady state produces the following equilibrium conditions

ŷt = Etŷt+1 − ω1((R̂t −Etπ̂t+1)− (χ̂t −Etχ̂t+1)) + ω2((m̂t − êt)− (Etm̂t+1 −Etêt+1))(22)

m̂t = γ1ŷy − γ2R̂t + (1− (Rs − 1)γ2)êt (23)

π̂t = βEtπ̂t+1 + ψ(
1

ω1
ŷt −

ω2
ω1

(m̂t − êt)− ẑt) (24)

R̂t = ρrR̂t−1 + (1− ρr)ρy ŷt−1 + (1− ρr)ρππ̂t−1 + (1− ρr)ρm(∆m̂t − π̂) + v̂t (25)

where

ω1 = −
U1(ct,

mt

et
)

ysU11(ct,
mt

ptet
)

(26)

ω2 = −
ms

es
U12(ct,

mt

et
)

ysU11(ct,
mt

et
)

(27)

γ1 = (Rs − 1 +
ysrsω2
ms

)(
γ2
ω1

) (28)

γ2 =
Rs

(Rs − 1)(ms/es)
(

U2(ct,
mt

et
)

(Rs − 1)esU12(ct,
mt

et
)−RsU22(ct,

mt

et
)
) (29)

ψ =
ǫ− 1

φ
(30)
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the superscript s denotes steady state values of the variables, Uj is the first derivative of U with

respect to argument j = 1, 2 and Uij is the second order derivative of the utility function, i, j = 1, 2.

The log-linearized Euler condition (equation (22)) includes terms involving real money balances

and the money demand shocks. They drop out from the expression if and only if utility is separable

in consumption and real balances, i.e U12 = 0 (see equation (27). Similarly, in the forward looking

Phillips curve (equation (24)) real balances play a role as long as ω2 �= 0, which in turn again

implies that U12 �= 0 is necessary for real balances to matter. Hence, real balances play a direct

role in determining output and inflation in the model if and only if real balances and consumption

enter non-separably in the utility function. On the other hand, the posited policy rule implies that

the growth rate of nominal balances may be an important determinant of output and inflation

indirectly, via interest rate determination.

Since our scope here is illustrative, we focus attention on the estimates of ω2 and ρm, only.

When ω2 and ρm are zero real balances have no direct or indirect role in propagating cyclical

fluctuations.

4.2 Estimation

We estimate the model with US data from 1959:1 to 2008:2. All the data comes from the FRED

data bank at the Federal Reserve Bank of Saint Louis and it is seasonally adjusted. For real

GDP we take the GDPC96 series, which is a chain weighted real value of domestic production,

convert it in per-capita terms dividing it by the civilian non-istitutional population, age 16 and

over (CNP16OV) and log it. For real balances, we use the stock of M2 (M2SL), divide it by the

GDP deflator (GDPDEF), convert it into per-capita terms scaling it by the civilian non-istitutional

population, age 16 and over and log it. Inflation is calculated annualizing the quarterly growth rate

of the GDP deflator and a three months T-bill series (TB3M) is our measure of interest rates.

As mentioned, we employ 8 procedures to extract the cyclical component of the data. The

first transformation (POLY) fits a second order deterministic polynomial to each series separately,

allowing for a change in all the parameters at 1980:3. The cyclical component is constructed as

the residual in the regression. The FOD transformation takes the first difference of all the series as

an estimate of the cyclical component. The HP filter uses the standard value of λ = 1600 and the

BP filter uses Baxter and King (1994) approach to extract cycles with 8 to 32 quarters periodicity.

The univariate Beveridge and Nelson decomposition (BN) fits a ARIMA(1,1,1) model to all series

separately and takes as estimate of the cyclical component the difference between the original series

and its model-based long run forecast. The multivariate version of this procedure (MBN) fits a

VAR with 6 lags to the four variables and takes as an estimate of the cyclical component, the

difference between the level of the variables and their long run path implied by the model. The

classical decomposition (CD) assumes a additive representation of trend and cycles, fits a linear
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trend to the data and takes the residuals as the cyclical component. Finally, the unobservable

component UC decomposition assumes that the non-cyclical component is a random walk and that

the cyclical component has a trigonometric representation (see Canova (2007a)). This implies that

each of the series has a ARIMA(2,1,0) representation. The cyclical component is estimated with

the projected values of an AR(2) regression of the growth rate of each variable. Note that, among

the procedures we consider there are some where the non-cyclical component is deterministic, some

where it is stochastic, and some where it is smooth; some use univariate and other multivariate

information; some imply that cyclical and non-cyclical components are independent and some that

they are correlated. Finally, some filtering procedures are two-sided and some one-sided.

We estimate the parameters of the model using MCMC Bayesian methods. The vector of observ-

ables is 32×1 (four series, 8 filtering methods) and the vector of states is 4×1. Since we set β = 0.99

and steady state inflation to 2 percent, there are 9 structural parameters (ω1, ω2, ψ, γ1, γ2, ρr, ρp, ρy, ρm)

- ǫ and φ are not separately identifiable - and seven auxiliary parameters (ρχ, ρe, ρz, σχ, σe, σz, σv)

to be estimated. We parametrize the link between the model and the cyclical data, allowing one

intercept and one slope per filter, independent of the series, but allow the idiosyncratic term to be

series and filter dependent. This implies that the intercept measures the average (across series and

time) bias of each procedure in constructing the cyclical component and the slope measures the

correlation between the data produced by each method and the model based quantities (again, on

average across series). Since we normalize the slope of the first procedure to the identity, we have a

total of 47 non-structural parameters to be estimated (8 intercept, 7 slopes and 32 variances). We

have also experimented with specifications with restrict the variances of the idiosyncratic compo-

nent to be either series specific (independent of the filtering method) or filter specific (independent

of the series) but discarded them because the model fit turns out to be relatively poor.

We draw 500,000 elements of the MCMC chain using a RWM algorithm previously described.

Convergence was achieve in less than 100,000 draws for each model specification we present. Pos-

terior statistics are computed using one every 100 of the last 200,000 draws.

As a benchmark, we have estimated the parameters of interest using as vector of observables

linearly detrending pre-capita output and per-capita real balances, and the demeaned value of

inflation and the nominal rate. We present the results obtained when we allow for measurement

error in each equation. This is the correct specification to employ for comparison purposes since

measurement error is preferable for comparison purposes since our approach has measurement error

built in. However, when DSGE models are estimated, measurement error is typically left out of

the specification. Therefore, it is also worth comparing the results of our setup with those of this

specification.
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4.3 The results

Before we present the results of interest we briefly comment on three outcomes of the estimation

of the non-structural parameters when our suggested procedure is used. First, the vector of λ0 is

estimated, for all purposes, to be zero with very samll standard errors. Therefore, all the filtered

data do not present level biases relative to the cyclical components produced by the model. Second,

the loadings paramaters are estimated to be between 0.60 (for the UC filtered data) up to 0.86

( with the CD fitlered data). Therefore, there is sufficient idiosyncratic information in the data

produced by the various procedures. Since the posterior standard errors are pretty tight, difference

in the loadings between any of the procedures are a-posteriori relevant. Third, measurement error

appear to have a highly idiosyncratic variance, both across series and across filtering methods. This

clearly reflects the fact that the variability of an individual series depend on the filtering approach

used and that filtered series display very different amount of ”cyclical” fluctuations. This is the

reason for why, for example, a restricted version of the setup we use, where only one parameter

characterizes the variability across series or across filtering methods produce a poor fit.

Table 5 presents the marginal likelihood of the unrestricted an specification where both direct

and indirect effects of money are allowed and for three restricted specifications where either the

direct effect is eliminated (ω2 = 0), the indirect effect is eliminated ρm = 0, or both are eliminated.

Specification Acceptance rate Marginal log Likelihood ω2 ρm

Unrestricted 33.86 16274 0.44 (0.02) 0.48 (0.02)
ω2 = 0 33.64 16237 0 0.96(0.01)
ρm = 0 38.15 16212 0.43(0.02) 0

ω2 = 0, ρm = 0 33.77 16220 0 0

Standard with m.e. 0.03 (0.02) 0.04 (0.03)
Standard 0.90 (0.11) 0.71 (0.05)

Table 5: Marginal likelihood and Posterior estimates, various specifications

Clearly, a specification where both effects are present is preferable to any other specification

and restricting both ρm = 0 and ω2 = 0 is preferable to restricting only ρm = 0. Overall, at

least in terms of model fit, both the direct and indirect effect that the model give to money are

important. This result is confirmed when looking at the location measures for the posterior of the

two parameters.

Our specification implies a economically moderate direct and indirect effects of money on output

and inflation. Statistically both parameters are estimated tightly and both are a-posteriori different

from zero. A standard specification with measurement error, on the other hand, implies that both

direct and indirect effects are quite small, and for all purposes, they can be set to zero without

major biases. A specification where measurement errors is omitted, on the other hand instead
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indicates that both effects are economically important but, as expected, the standard errors of the

estimates are larger here.
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Figure 6: Impulse responses, standard and new approaches

How important are the differences in the point estimates with obtain with our approach and the

standard ones? Figure 6 presents responses to the four shocks for our specification and a standard

specification with measurement errors. Responses look qualitatively similar in the two cases, but

there are important differences in the magnitude and the persistence of the variables to shocks. In

particular, the persistence of the responses to monetary shocks is reduced, the one of the technology

shocks is increases with the standard approach. In addition, the responses to money demand shocks

have different magnitude and persistence with the standard approach

In sum, our model estimates appear to be intermediate between those obtained with a stan-

dard approach on this sample and overall more precise. Given the experimental evidence we have

collected in the previous section, it is also likely that they are less biased than the other, as far as

persistence of the shocks and measurement of the substitution and income effects are concerned.

Economically, our estimates suggest that to correctly understand how monetary business cycles are
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generated money must be included in the model in a meaningful and intuitive way.

5 Conclusions

This paper proposes a method to estimate the structural parameters of a DSGE model using

multiple cyclical information. The approach borrows ideas from the recent data-rich environment

literature (see Boivin and Giannoni (2005)) to set up an estimated structure where vectors of

filtered data obtained with alternative procedures are treated as contaminated estimates of the true

cyclical component. Measurement error may have different features and different power at different

frequencies, depending on the filtering approach used. We set up a signal extraction framework

where the cyclical DSGE is the unobservable factor, vectors of filtered data are contaminated

observable proxies, and the parameters of the DSGE model are jointly estimated together with the

non-structural parameters using signal extraction techniques.

Our approach is advantageous in, at least, two respects. Since we do not have to arbitrarily

choose one filtering method prior to the estimation, we avoid specification errors of various sorts.

The only constraint to the number of the vectors of filtered data used in the estimation is the RAM

capacity of the computer. Furthermore, one-sided and two-sided filters can both be used as long

as the list of filters is sufficiently rich. Second, if different filters have sufficiently different features,

measurement error may have different time series properties. Since the implicit information averag-

ing our procedure produces may reduce measurement error and eliminate its cyclicality, estimates

of the cyclical components are more reliable and precise, making parameter estimates and inference

less dependent on data transformations.

We investigate the properties of our approach using experimental data. We show that estimating

the structural parameters of the model with just one arbitrary filter typically induces large biases

in the estimates and that these biases are considerably reduced with our approach. We also show

that in an unconditional forecasting exercise, the one step ahead MSE produced by our approach

is smaller than the MSE obtained with standard procedures and that the biases we have noted

translate in conditional forecasts which are considerably distorted relative to the true ones.

To show the biases induced by standard approaches have relevant economic implications, we

revisit the role of money in the monetary business cycle. The literature has largely neglected the

stock of money when studying monetary business cycles and Ireland (2004) has shown that such

an approach is by and large appropriate using US data and a standard estimation setup. We

show that when information produced by multiple filters is taken into account, both the direct

and the indirect channels through which money may play a role, are statistically important and

economically significant. These features imply that the propagation of primitive shocks in the

estimated economy is different from the one obtain if only one data transformation is used.
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Why does the literature employs time invariant cyclical DSGE models? First, jointly modelling

growth and cyclical fluctuations is a very ambitious task since there are few theoretical mechanisms

which are able to propagate temporary shocks for a long period of time (we need, for example,

R&D, as in Comin and Gertler (2006) or Schumpeterian creative destruction, as in Canova, Lopez

Salido and Michelacci (2007)) or create important cyclical implications from long run disturbances.

Second, it is convenient to assume that the mechanism driving growth and cyclical fluctuations

are distinct and orthogonal. Third, time varying structures are difficult to deal with in theory and

hard to handle computationally (see e.g. Fernandez Villaverde and Rubio Ramirez (2007)).

This paper complements those of Canova (2008) and Ferroni (2008) and suggest a novel way

to approach structural estimation of cyclical DSGE models. Future work in the area will include

revisiting several apparently known puzzles in the macroeconomic literature using the approach

proposed in this paper and better understanding the properties of the procedure using interesting

experimental designs.
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