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Abstract 
The present study is an attempt to revisit the evidences of a very recent study of Paul (2010) on 
the role of macro imbalances in the US recession of 2007-09. Contrary to Paul (2010) who finds 
that great recession was due to, particularly, twin deficits, I found central cause of the problem 
was prolonged fiscal deficit. 
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1. Introduction  

The discussion of the US great recession of 2007-09 has brought considerable interest of both 
researchers and policy makers. Number of attempts has been made to identify reasons of this 
great depression. In a very recent study, Paul (2010) show that, using vector Autoregressive 
(VAR) model, trade deficits and fiscal deficits has contributed to the low interest rate and 
decreasing the output over the period of 1987-2009. He also shows that low interest rate is 
caused by low private saving which greatly contributed to the housing bubble. And hence, Paul 
(2010) concluded that low saving and twin deficits have been the main reason for the great 
recession experienced.1      

However, I have made an attempt in this study to revisit the findings and conclusions drawn by 
Paul (2010). Since, Paul (2010) has used VAR model to analyze the problem and if there is 
evidence of nonlinearity in the data series conclusion drawn from the study will be biased. 
Therefore, in the present study I made and attempt to analyze the problem by using the nonlinear 
Granger causality analysis in the framework of Hiemstra and Jones (1994) which was improved 
upon Baek and Brock (1992) proposed test.  

2. Nonlinear Granger causality 
 

It is important to mention that the linear approach to causality testing can have the low power 
detecting certain kinds of nonlinear causal relation. In this regard Baek and Brock (1992) is the 
first study to the best of our knowledge which proposed a test based on a nonparametric 
statistical method for uncovering nonlinear causal relations that cannot be detected by traditional 
liner Granger causality test. Baek and Brock’s (1992) proposed test was based on an approach 
that utilizes the correlation integrals, which is an estimator of spatial probabilities across time 
based upon the closeness of the points in hyperspace to detect the relation between two time 
series. The distribution of the test statistic is one tailed and hence, rejections of the hypothesis are 
restricted to one tail of the distribution. Hiemstra and Jones (1994) modified the statistic of Baek 
and Brock (1992) and show that their test statistics has better small-sample properties and it can 
be applied to the series that relaxes the assumption that the series are i.i.d. Hiemstra and Jones 
(1993) show in their Monte Carlo simulations that their modified test is robust to the presence of 
structural breaks in the series and contemporaneous correlations in the errors of the VAR model 
used to filter out linear cross- and auto-dependence. Baek and Brock (1992) developed a 
nonparametric statistical technique for detecting nonlinear causal relationships from the residuals 

of linear Granger causality models. Following Hiemstra and Jones (1994), we let )|( 1−tt IXF  

denote the conditional probability distribution of tX  given the information set 1−tI , which 

consists of an XL -length lagged vector of tX , say ),,...,,( 11 −+−−− ≡ tLxtLxt
Lx

Lxt XXXX  and an YL -

                                                           
1 More comprehensive review on this aspect can be referred in Paul (2010) as this study is just a revisit of the evidence of Paul 
(2010) therefore, review has been avoided.  
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length lagged vector oftY , say ).,...,,( 11 −+−−− ≡ tLytLyt
Ly

Lyt YYYY Hiemstra and Jones (1994) consider 

testing, for a given pair of lagsXL  and YL , the following relationship: 

:0H    ))(|()|( 11
Ly

Lyttttt YIXFIXF −−− −=                                                                                     (1) 

That is, the null hypothesis of interest states that taking the vector of past Y-values out of the 
information set does not affect the distribution of current X-values. Adopting the notation used 

by Hiemstra and Jones (1994), we denote the m-length lead vector of tX  by m
tX , so that we can 

summarize the vectors defined so far, forZt ∈ , as: 

),,...,,( 11 −++= mttt
m
t XXXX                                                    m = 1, 2, … 

),,...,,( 11 −+−−− = tLxtLxt
Lx

Lxt XXXX                                             Lx = 1, 2, …                                (2) 

),,...,,( 11 −+−−− = tLytLyt
Ly

Lyt YYYY                                                   Lx = 1, 2, … 

A crucial claim made by Hiemstra and Jones (1994) without proof, states that the null hypothesis 
given in equation (1) implies, for all ε  > 0: 

( )εεε <−<−<− −−−−
Ly

Lys
Ly

Lyt
Lx

Lxs
Lx

Lxt
m
s

m
t YYXXXXP ,|  

                         ( )εε <−<−= −−
Lx

Lxs
Lx

Lxt
m
s

m
t XXXXP | ,                                                            (3) 

where P(A|B) denotes the conditional probability of A given B, and •  the maximum norms-a 

distance measure (in this case supremum norm), which for a d-dimensional vector 
T

dxxx ),...,( 1= is given by .||sup 1 i
d
i xx ==  The probability on the left-hand side of equation (3) 

is the conditional probability that two arbitrary m-length lead vectors }{ tX  (i.e., m
tX  and m

sX ) 

are within a distance ε  for each other (or ε -close), given the corresponding XL -length lag 

vector of }{ tX (i.e., Lx
LxtX −  and Lx

LxsX − ) and  YL -length lag vector }{ tY (i.e., Ly
LytX − and Ly

LysX − ) are 

within ε  of each other (or ε -close). The probability on the Right hand Side (RHS) of equation 

(3) is the conditional probability that two arbitrary m-length lead/lag vectors of }{ tX (i.e., m
tX  

and m
sX ) are within  a distance ε  for each other (or ε -close), given that the corresponding 

lagged Lx -length lag vectors of }{ tX  (i.e., Lx
LxtX − and Lx

LxsX − ) are within a distance of ε  of each 

other (orε -close). Hence, non-Granger causality implies that the probability that two arbitrary 
lead vectors of length m are within a distance of ε  of each other is the same conditional upon the 

two lag vectors of }{ tX  being within a distance ε  of each other and two lag vectors of  }{ tY  

being within a distance ε  of each other; and conditional upon the lag vectors of }{ tX only being 

within a distance ε of each other. In other words, no Granger causality means that the probability 
that lead vectors are within distance ε  is the same whether we have information about the 

distance between }{ tY lag vectors or not.  
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We can write the conditional probability expressed in equation (3) as ratios of joint probabilities. 

Assuming that ),,(2/),,(1 εε yxyx LLCLLmC + and ),(4/),(3 εε xx LCLmC + denote the ratio of 

joint probabilities corresponding to the Left Hand Side (LHS) and RHS of equation (3), the joint 
probabilities can be written as: 

( )εεε <−<−=+ −−
+

−
+

−
Ly

Lys
Ly

Lyt
Lxm

Lxs
Lxm

Lxtyx YYXXPLLmC ,),,(1 , 

( )εεε <−<−= −−−−
Ly

Lys
Ly

Lyt
Lx

Lxs
Lx

Lxtyx YYXXPLLC ,),,(2 , 

( )εε <−=+ +
−

+
−

Lxm
Lxs

Lxm
Lxtx XXPLmC ),(3 , 

( )εε <−= −−
Lx

Lxs
Lx

Lxtx XXPLC ),(4                                                                                                  (4) 

Further, we can write the strict Granger non-causality condition in equation (3) as follows 

),(4

),(3

),,(2

),,(1

ε
ε

ε
ε

x

x

yx

yx

LC

LmC

LLC

LLmC +=
+

                                                                                              (5) 

For given values of m, xL , 1≥YL  and 0>ε . 

Now, assuming that }{ tX and }{ tY denote the actual realization of the process and ),,( εBAI  

denoting an indicator function that takes the value one if the vector A and B are within a distance 
ε  of each other and zero otherwise and considering that the properties of the supremum norm 

allow us to inscribe ( )εε <−<− −−
Lx

Lxs
Lx

Lxt
m
s

m
t XXXXP ,  as ( )ε<− +

−
+

−
Lxm

Lxs
Lxm

Lxt XXP , then the 

estimates of the correlations integrals in equation (5) can be expressed as: 

( ) ( )εεε ,,,,
)1(

2
),,,(1 Ly

Lys
Ly

Lyt
Lxm

Lxs
Lxm

Lxtyx YYIXXI
nn

nLLmC −−
+

−
+

− ⋅
−

≡+ ∑∑ , 

( ) ( )εεε ,,,,
)1(

2
),,,(2 Ly

Lys
Ly

Lyt
Lx

Lxs
Lx

Lxtyx YYIXXI
nn

nLLC −−−− ⋅
−

≡ ∑∑  

( )εε ,,
)1(

2
),,(3 Lxm

Lxs
Lxm

Lxtx XXI
nn

nLmC +
−

+
−∑∑−

≡+  

( )εε ,,
)1(

2
),,(4 Lx

Lxs
Lx

Lxtx XXI
nn

nLC −−∑∑−
≡  

For ).,max(1;1,...,1),max(, yxyx LLmTnmTLLst −−+=+−+=  
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Assuming that m
tX  and m

tY are strictly stationary and meet the required mixing conditions as 

specified in Denker and Keller (1983), under the null hypothesis that m
tY does not strictly 

Granger cause m
tX , the test statistic T is asymptotically normally distributed. That is,  

 

,),,,(
1

,0~
),,(4

),,(3

),,,(2

),,,(1 2 



















 +−
+

= εσ
ε

ε
ε

ε
yx

x

x

yx

yx LLm
n

N
nLC

nLmC

nLLC

nLLmC
T                                  (6) 

where, ),max(1 yx LLmTn −−+=  and )(2 ⋅σ  is the asymptotic variance of the modified Baek 

and Brock (1992) test statistic.2 One sided critical values are used, based upon this asymptotic 
results, rejecting when the observed value of test statistic in equation (6) is too large. To test for 

nonlinear Granger causality between }{ tX and }{ tY ; test statistic in equation (6) is applied to the 

estimated residual series from the bivariate VAR model. In this case, the null hypothesis is that 

}{ tY  does not nonlinearly strictly Granger cause}{ tX , and equation (6) holds for all m, xL , 1≥YL  

and 0>ε . By removing a linear predictive power form a linear VAR model, any remaining 
incremental predictive power of one residual series for another can be considered nonlinear 
predictive power (see Baek and Brock, 1992). A significantly test statistics in equation (6) 
suggests that lagged values of Y help to predict X, whereas a significant negative value suggest 
knowledge of the lagged value of Y confounds the prediction of X. For this reason, the test 
statistic in equation (6) should be evaluated with right-tailed critical values when testing for the 
presence of Granger causality. Using Monte Carlo simulations Hiemstra and Jones (1993) find 
that the modified Baek and Brock (1992) test has remarkably good finite sample size and power 
properties against a variety of nonlinear Granger causal and non-causal relations. 

 

3. Data analysis and results interpretation 

Before testing for nonlinear Granger causality, it is important to first determine if the data are 
characterized by nonlinearities.3 Therefore, I perform a formal nonlinear dependence test known 
as the Brock, Dechert, and Scheinkman (BDS) test. The BDS approach essentially tests for 
deviations from identically and independently distributed (i.i.d.) behavior in time series. Results 
of the BDS test reveal that the vast majority of the estimates of the BDS statistics are statistically 
significant, indicating significant nonlinearities in the univariate time series.4 To conduct tests for 
nonlinear causality we use the residuals from the linear VAR model, from which any linear 

                                                           
2 The asymptotic variance is estimated using the theory of U-statistic for weakly dependent processes (Denker and Keller, 1983). 
For a complete and detailed derivation of the variance see the appendix in Hiemstra and Jones (1994). 
3 I am thankful for Prof. Paul for sharing the data which he used in the analysis in his paper. Data source for related variables can 
be found in his paper. I am also thankful to Panchenko for providing me the codes for this analysis.  
4 Results of correlation and descriptive statistics are presented in the appendix of the paper and results of the BDS test are 
available upon request to the author. Results of correlation has been presented just to match with the results of Paul (2010) 
presented in Table 1.  
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predictive relationship has already been removed. Values for the lead length m, the lag lengths 

xL  and YL , and the distance measure ε  must be selected in order to implement the Baek and 

Brock (1992) test. In contrast to linear causality testing, we do not have any well developed 
methods for choosing optimal values for lag lengths and distance measure. Therefore, I followed 

Hiemstra and Jones (1994) and set the lead length at m = 1 and set xL  = YL for all cases. In the 

present study I use common lag lengths of one to five lags and a common distance measure of 
ε =1.5σ, where σ denotes the standard deviation of the time series.5 In the results of this paper I 
focus on p-values for the modified Baek and Brock (1992) test as this enables us to compare 
them with the empirical p-values obtained using the re-sampling procedure. The empirical p-
values account for estimation uncertainty in the residuals of the VAR model used in the modified 
Baek and Brock (1992) test, thereby, making these results more reliable.6 Diks and DeGoede 
(2001) have conducted a number of experiments in order to determine the best randomization 
procedure for obtaining empirical p-values. There, finding show that the best finite sample 
properties of the tests are obtained when only the causing series were bootstrapped in the 
analysis. Hence, I adopt this methodology in this analysis. I used the Stationary bootstrap of 
Politis and Romano (1994) to preserve potential serial dependence in the causing series. The re-
sampling scheme which is robust with respect to parameter estimation uncertainty is 
implemented as follows: 

1. First, estimate a parametric model and obtain the fitted values of the conditional mean 
and the estimated residuals.7 

2. Next, resample the residuals in such a way that satisfies the null hypothesis.8  

                                                           
5 In the estimation we also considered ε  = 0.5σ and 1.0σ. There were no qualitative differences in our results. 
6 Baek and Brock (1992) suggest that a weakness of their test is that it could spuriously reject the null hypothesis of Granger non-
causality due to the presence of non-stationarity induced by structural breaks in the data and heteroskedasticity (recent finding by 
Diks and Panchenko (2005, 2006) also suggests that the rejection of the null in this case may also indicate the presence of 
conditional heteroskedasticity in the data). Further, Granger non-causality test does not identify the underlying source of causality 
which may be due to due to structural breaks in the data (Baek and Brock, 1992; Andersen, 1996) or to a differential reaction to 
information flow as proxied by volatility (Ross, 1989) or some combination of the two. To test whether results are period 
sensitive we can conduct an experiment for sub periods however, we have avoided this testing because if we conduct this kind of 
test are left with a very small sample in both periods which again may provide us misleading results. Further, since modified 
Baek and Brock (1992) test for Granger non-causality is applied to the residuals of the VAR model, rather than to original 
untreated observations. This may also lead to erroneous inferences because of an unaccounted estimation uncertainty. The reason 
for this is the potential difference of the null distribution when the test is applied to residuals rather than to original observations 
(Randles, 1984). This difference arises because the parameter estimation uncertainty is not reflected in the test statistics. To 
eliminate any erroneous inference we use a re-sampling scheme that incorporates parameter estimation uncertainty. We continue 
to use the test statistics of the modified Baek and Brock (1992) test and modify the re-sampling procedure of Diks and DeGoede 
(2001) to determine empirical p-values of the nonlinear Granger causality tests. The test statistics Ti is given in equation (6). 
7 The estimation uncertainty of the calendar effects is accounted by starting with the unadjusted returns and explicitly including 
the calendar dummies in the conditional mean equation. 
8 The re-sampling procedure imposes a more restrictive null hypothesis of conditional independence. However, the test detects 
the deviations from the null in the direction of interest, that is, Granger causality. Let N denote the length of the series and PS is 
the stationary bootstrap switching probability. We start a new bootstrapped sequence from a random position in the initial series 
selected from the uniform distribution between 1 and N. With probability 1−PS the next element in the bootstrapped sequence 
corresponds to the next element in the initial series. With probability PS we randomly select an element from the initial sequence 
and put it as the next element in the bootstrapped sequence. The procedure continues until we obtain a bootstrapped sequence of 
length N. To ensure stationarity of the bootstrapped sequence, we connect the beginning and the end of the initial sequence. 
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3. In the next step, create artificial data series using the fitted values and the re-sampled 
residuals. 

4. Further, re-estimate the model using the artificial data and obtain new series of the 
residuals. 

5. Finally, compute test statistics Ti for the artificial residuals. 
By repeating the bootstrap N-times and calculating test statistic Ti for each bootstrap i=1…N, we 
obtain empirical distribution of the test statistics under the null. Further, to obtain the empirical 
p-values of the test we compare the test statistics computed from the initial data T0 with the test 
statistics under the null Ti: 

,
1

)(#
0

0

+

≤
=
∑

=

N

TT
p

i

N

i                                              

where, #(·) denotes the number of events in the brackets. The test rejects the null hypothesis in 
the direction of nonlinear Granger causality whenever T0 is large. For the bootstrapping I set the 
number of bootstraps N=99.9 The bootstrap switching probability PS is set to 0.05. The results 
based on the bootstrapped empirical p-values of non-linear Granger causality analysis are 
reported in the following Table 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
9 B=99 is the smallest commonly suggested number of bootstrap replications (see Davidson and MacKinnon, 2000 for details). 
Because of computational limitations we were unable to increase N, which may possibly result in some loss of power for our 
tests. 
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Table 1: Results of nonlinear Granger causality  
Null hypothesis  Lag1 Lag2 Lag3 Lag4 Lag5 

1. Fiscal deficit does not Granger cause Fed rate 0.25 0.21 0.38 0.36 0.32 
2. Trade deficit does not Granger cause Fed rate  0.91 0.54 0.70 0.28 0.44 
3. Fed rate does not Granger cause saving rate 0.26 0.11 0.18 0.18 0.28 
4. Fiscal deficit does not Granger cause GDP growth 0.81 0.73 0.27 0.18 0.61 
5. Trade deficit does not Granger cause GDP growth 0.37 0.14 0.09 0.11 0.12 
6. Trade deficit does not Granger cause fiscal deficit  0.10 0.06 0.25 0.22 0.28 
7. Fiscal deficit does not Granger cause Trade deficit 0.62 0.25 0.22 0.23 0.32 
8. Trade deficit does not Granger cause saving rate 0.18 0.62 0.60 0.42 0.16 
9. Fed rate does not Granger cause Fiscal deficit  0.01 0.32 0.50 0.54 0.27 
10. Saving rate does not Granger cause trade deficit  0.46 0.44 0.63 0.14 0.23 
11. Fiscal deficit does not Granger cause saving rate 0.24 0.70 0.60 0.26 0.03 
12. Saving rate does not Granger cause fiscal deficit 0.06 0.62 0.62 0.72 0.35 
13. Fed rate does not Granger cause trade deficit 0.76 0.93 1.00 0.96 0.95 
14. Saving rate does not Granger cause Fed rate  0.15 0.42 0.15 0.07 0.32 
15. GDP growth does not Granger cause fiscal deficit 0.01 0.08 0.21 0.09 0.24 
16. GDP growth does not Granger cause trade deficit 0.52 0.11 0.07 0.74 0.79 

Note: This table reports parametric bootstrap p-values for the standard Baek and Brock (1992) nonlinear Granger 
causality test given in equation (6). The number of lags on the residuals series used in the test is one. In all cases, the 
tests are applied to the unconditional unstandardized residuals. The lead length, m, is set to unity, and the distance 
measure, ε , is set to 1.5. Bold are significant.   

 

It is evident from Table 1 that fiscal deficit and trade deficit do not Granger cause Fed rate; fiscal 
deficit does not Granger cause GDP growth and trade deficit; Fed rate does not Granger cause 
saving rate and trade deficit. However, trade deficit Granger case GDP growth and fiscal deficit; 
fiscal deficit Granger cause saving rate and saving rate Granger fiscal deficit and fed rate and 
GDP growth Granger cause both trade deficit and fiscal deficit.    

Therefore, we have contrary findings to Paul (2010). He found that fiscal and trade deficit 
Granger cause Fed rate and argued that high fiscal and trade deficit lowered the fed rate that 
implies that macroeconomic imbalances indirectly contributed to the cheap monetary policy and 
hence the housing bubble before the financial crises. However, I argue there might be any other 
reason for chap monetary policy of US but at least these two imbalances were not. Further, Paul 
(2010) found that fed rate Granger cause saving rate and hence he concluded that fed rate called 
falling saving rates which lower down the payments for home buying, lower equity, higher 
leverage, higher risk and a bigger bubble in the housing market. However, again, my findings do 
not provide any support to his argument. Further, Paul (2010) finds that twin deficit Granger 
cause GDP growth and hence, twin deficit supported in output decline however, I find that it the 
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trade deficit which is the causing phenomenon for output decline not the fiscal deficit. In 
addition to that I also find that GDP growth is also causing twin deficit that implies that GDP 
growth has increased the burden of trade deficit and fiscal deficit. Further, contrary to Paul 
(2010) who found that twin deficit are augmenting (reinforcing each other) i.e., Granger 
causality runs in both directions my study finds that trade deficit Granger cause fiscal deficit 
while fiscal deficit does not. Further, study shows that fiscal deficit and saving rate Granger 
cause each other i.e., fiscal deficit and savings rate appeared to have reinforcing each other. I 
also find that fed rate Granger cause fiscal deficit i.e., cheap monetary policy has been the cause 
of high fiscal deficit. Contrary to Paul (2010), I did not find evidence that trade deficit appeared 
to have lowered the saving rates or savings appeared to have increased the trade deficit.  

4. Conclusions  

This study is an attempt to revisit the evidences of a very recent study by Paul (2010) on the 
finding out the causing factors of recent witnessed the great recession of 2007-09 in the US, the 
worst one, since the Great Depression. Paul (2010) in his study finds that, without checking the 
stationarity property of the data series and applying the Granger causality, both the trade deficit 
and fiscal deficit have contributed in lowering the interest rate and output decline over the period 
of 1987-2009. However, this study reveals a different story. I do not find any evidence to support 
for his evidence that this is the twin deficit, which is contributed to cheap monetary policy. 
Further, it is the trade deficit which has lowered the GDP growth not the twin deficit (fiscal 
deficit and trade deficit).  Further, it is not the low interest rate which caused low savings but it is 
low rate of savings which caused the low rate of interest rate and that contributed to the housing 
bubble. The central cause of housing bubble is related to fiscal deficit. Low rate of fed rate 
(interest rate), GDP growth rate and high saving rate and trade deficit have contributed to high 
fiscal deficit and high fiscal deficit have increased the saving rate and increased savings have 
lowered the interest rate (i.e., cheap monetary policy) and that has been the cause of housing 
bubble.  
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Appendix 1: Table of correlation and descriptive statistics 

 

Correlation  
 FEDRATE FISCALDEFICIT GDPGROWTH SAVINGRATE TRADEDEFICIT 

FEDRATE 1     
FISCALDEFICIT -0.60902 1    
GDPGROWTH 0.16693287 -0.305938 1   
SAVINGRATE 0.42260866 0.1084869 0.12243425 1  

TRADEDEFICIT -0.49485590 0.04961205 -0.13000290 -0.87084829 1 
Descriptive statistics 

 Mean  4.499000  241.5109  0.663169  4.464819  324.6456 
 Median  4.990000  230.5815  0.732782  4.566700  274.8000 
 Maximum  9.730000  1226.422  1.951462  7.600000  756.4000 
 Minimum  0.120000 -291.6140 -1.647403  1.200000  24.90000 
 Std. Dev.  2.340018  284.6861  0.633128  1.842776  245.9741 
 Skewness -0.010464  1.132413 -0.933979 -0.046723  0.362941 
 Kurtosis  2.433173  6.013619  5.057897  1.865499  1.608393 

      
 Jarque-Bera  1.206489  53.29251  28.96577  4.859343  9.238026 
 Probability  0.547034  0.000000  0.000001  0.088066  0.009863 

      
 Sum  404.9100  21735.98  59.68522  401.8337  29218.10 
 Sum Sq. Dev.  487.3358  7213108.  35.67576  302.2282  5384788. 

      
 Observations  90  90  90  90  90 

 

 


