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Abstract

The paper presents a human-capital-based endogenous growth, cash-
in-advance economy with endogenous velocity where exchange credit is
produced in a decentralized banking sector, and money is supplied sto-
chastically by the central bank. From this it derives an exact functional
form for a general equilibrium ‘Taylor rule’. The inflation coeffi cient is
always greater than one when the velocity of money exceeds one; velocity
growth enters the equilibrium condition as a separate variable. The paper
then successfully estimates the magnitude of the coeffi cient on inflation
from 1000 samples of Monte Carlo simulated data. This shows that it
would be spurious to conclude that the central bank has a reaction func-
tion with a strong response to inflation in a ‘Taylor principle’sense, since
it is only meeting fiscal needs through the inflation tax. The paper also es-
timates several deliberately misspecified models to show how an inflation
coeffi cient of less than one can result from model misspecification. An in-
flation coeffi cient greater than one holds theoretically along the balanced
growth path equilibrium, making it a sharply robust principle based on
the economy’s underlying structural parameters.
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1 Introduction

Interest rate rules are widely considered as monetary policy ‘reaction functions’
that represent how the central bank adjusts a short-term nominal interest rate
in response to the state of the economy. The magnitude of the reaction function
coeffi cients are interpreted to reflect a policymaker’s attitude towards variation
in key macroeconomic variables such as inflation and the output gap. It has been
suggested that policymakers ought to adhere to the ‘Taylor principle’, whereby
inflation above target is met by a more-than-proportional increase in the short-
term nominal interest rate and hence an increase in the real interest rate. Such
an interest rate rule forms one of the three core equations of the prominent
New Keynesian modelling framework, such as in Woodford, 2003, Clarida et al.,
1999; and Clarida et al. (2000). One well-known finding comes from the latter
paper which concludes that the Taylor principle holds for a ‘Volcker-Greenspan’
sample of U.S. data but that it is violated for a ‘pre-Volcker’ sample during
which the Fed was deemed to be accommodating in its reaction function.
In contrast, a historical strand of literature going back to Poole (1970), and

updated for example by Alvarez et al. (2001) and Chowdhury and Schabert
(2008), considers interest rate rules and money supply rules as two ways of im-
plementing the same monetary policy. This paper perhaps most closely follows
Alvarez et al. (2001) by deriving the equilibrium nominal interest rate in a ‘rule’
form within a general equilibrium economy in which the central bank conducts
policy by stochastically supplying money. Instead of an exogenous fraction of
agents being able to use bonds as in Alvarez et al., here the consumer purchases
goods with an endogenous fraction of bank-supplied intratemporal credit that
avoids the inflation tax on exchange. This cash-in-advance monetary economy
is also extended to include endogenous growth, along with endogenous velocity,
as in Benk et al. (2010). The resulting equilibrium nominal interest rate con-
dition ‘nests’ the standard Taylor rule within a more general forward-looking
setting that endogenously includes traditional monetary elements, such as the
(exogenous) velocity in Alvarez et al., and the money demand in McCallum and
Nelson (1999).
The endogenous growth aspect implies that the ‘target’terms of the equi-

librium ‘Taylor condition’, such as the inflation rate target or the ‘potential’
output level, are the balanced growth path (BGP ) equilibrium values of the
related variables. In addition, the coeffi cients of the Taylor condition are a
function of the model’s utility and technology parameters along with the BGP
money supply growth rate. This in essence fulfills Lucas’s (1976) goal of postu-
lating policy rules with coeffi cients that depend explicitly upon the economy’s
underlying utility and technology coeffi cients plus a key policy choice, in this
case the BGP rate of money supply growth. Aesthetic as such a formulation
of the Taylor condition may be, Lucas’s research agenda provides a solid result
here: a theoretical derivation of the ‘Taylor principle’where the coeffi cient on
the inflation term always exceeds or equals one. The ‘principle’holds for any
given non-Friedman (1969) optimum BGP money supply growth rate, it equals
one only at the Friedman optimum, and never falls below one. Similarly, the
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inflation coeffi cient always exceeds one when the endogenous velocity exceeds
one since the cash-in-advance velocity rises above one for any non-Friedman
optimal rate of money supply growth. In general, the inflation coeffi cient rises
with the BGP velocity level. Another central result is that the expected velocity
growth rate itself enters the Taylor condition as an additional term, in contrast
to standard Taylor rules. Omitting this term can cause misspecification bias in
estimated Taylor rules within the economy.
Having derived the Taylor condition, the paper then estimates it by applying

three conventional estimation procedures to one thousand samples of artificial
data simulated from the baseline model, where the simulated data is passed
through three standard filters prior to estimation. The results verify the theo-
retical form of the Taylor condition along several key dimensions. In particular,
the coeffi cient on inflation is greater than one and close to its theoretical magni-
tude for all three estimation techniques and for all three data filters. Satisfying
the ‘Taylor principle’ in this fashion, robustness tests explore the impact of
estimating two alternative Taylor conditions. This involves two ad hoc, deliber-
ately misspecified equations relative to the ‘true’theoretical expression: the first
changes just one of the variables in the Taylor condition while the second posits
a standard Taylor rule that involves multiple misspecification errors. Using the
same artificial data, estimating the two misspecified models results in the coeffi -
cient on inflation falling below one, causing the ‘Taylor principle’to fail. In the
context of actual data, this result would typically be interpreted as the central
bank being ‘passive’or ‘weak’ towards inflation. Here, the paper shows that
such an interpretation could be spurious in that it could occur simply because
of a misspecified estimating equation.1

The estimated ‘Taylor rule’emerges even though the central bank is merely
satisfying fiscal needs through the inflation tax. This implies the central point
of the paper: it would be spurious within this economy to associate the Taylor
condition with a ‘reaction function’ for the nominal interest rate since in the
model the central bank just stochastically prints money. Second, failure of the
so-called Taylor principle in numerous published empirical studies may be a
result of model misspecification rather than behavioral changes by the central
bank per se. Indeed, our current preliminary extension of this work, not pre-
sented here, shows that estimation with actual US data of Taylor rules which
include the unconventional terms implied by the theory of this paper - partic-
ularly velocity growth - can reverse the result that the coeffi cient on inflation
falls below unity during periods of macroeconomic instability.2

Related work is vast but includes Taylor (1999), who alludes to the possibility
that an interest rate rule can be derived from the quantity theory of money.
Sørensen and Whitta-Jacobsen (2005, pp.502-505) present such a derivation
under the assumption of constant money growth whereby the coeffi cients of

1Estimation of simulated data is conducted by Fève and Auray (2002), for a standard
CIA model, and Salyer and Van Gaasbeck (2007), for a ‘limited participation’model. We are
indebted to Warren Weber for the suggestion to follow such an approach here.

2Clarida et al.’s (2000) ‘pre-Volcker’sample, for example, corresponds to a period of high
and variable inflation.
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the ‘rule’relate to elasticities of money demand rather than the preferences of
policymakers. Fève and Auray (2002) and Schabert (2003) consider the link
between money supply rules and interest rate rules in standard cash-in-advance
models with velocity fixed at unity. Alternatively, the paper could be viewed in
light of Canzoneri et al. (2007) in that it shows how the puzzle of estimating
the Euler equation for the nominal interest rate can be solved by combining
that equilibrium condition with the stochastic asset pricing kernel to derive an
expression for a Taylor condition that can be successfully estimated.
Section 2 describes the economy, as in Benk et al. (2008, 2010). Section 3

derives the model’s ‘Taylor condition’and Section 4 provides the baseline cal-
ibration. Section 5 describes the econometric methodology which is applied to
model-simulated data and presents the corresponding estimation results. Sec-
tion 6 derives special theoretical cases of the more general (Section 2) model
to show how alternative Taylor conditions can be derived. Section 7 presents a
discussion and Section 8 concludes.

2 Stochastic Endogenous Growth with Banking

The representative agent economy is as in Benk et al (2008, 2010) but with
a decentralized banking sector that produces credit as in Gillman and Kejak
(2011). By combining the business cycle with endogenous growth, stationary
inflation lowers the output growth rate as supported empirically in Gillman et
al. (2004) and Fountas et al. (2006), for example. Further, money supply
shocks can cause inflation at low frequencies, as in Haug and Dewald (2011)
and as supported by Sargent and Surico (2008, 2011), which can lead to output
growth effects if the shocks are persistent and repeated. This allows shocks over
the business cycle to cause changes in growth rates and in stationary ratios.
The shocks to the goods sector productivity and the money supply growth rate
are standard, while the third shock to credit sector productivity exists by virtue
of the model’s endogenous money velocity via the production function used
extensively in the financial intermediation microeconomics literature starting
with Clark (1984).
The shocks occur at the beginning of the period, are observed by the con-

sumer before the decision making process commences, and follow a vector first-
order autoregressive process. For goods sector productivity, zt, the money sup-
ply growth rate, ut, and bank sector productivity, vt:

Zt = ΦZZt−1 + εZt, (1)

where the shocks are Zt = [zt ut vt]
′, the autocorrelation matrix is ΦZ =

diag {ϕz, ϕu, ϕv} and ϕz, ϕu, ϕv ∈ (0, 1) are autocorrelation parameters, and
the shock innovations are εZt = [εzt εut εvt]

′ ∼N (0,Σ) . The general structure
of the second-order moments is assumed to be given by the variance-covariance
matrixΣ. These shocks affect the economy as described below, and as calibrated
in Benk et al. (2010).
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2.1 Consumer Problem

A representative consumer has expected lifetime utility from consumption of
goods, ct, and leisure, xt; with β ∈ (0, 1) , ψ > 0 and θ > 0, this is given by:

U = E0

∞∑
t=0

β
(ctx

ψ
t )1−θ

1− θ . (2)

Output of goods, yt, and increases in human capital, are produced with
physical capital and effective labor each in Cobb-Douglas fashion; the bank
sector produces exchange credit using labor and deposits as inputs. Let sGt and
sHt denote the fractions of physical capital that the agent uses in the goods
production (G) and human capital investment (H), whereby:

sGt + sHt = 1. (3)

The agent allocates a time endowment of one between leisure, xt, labor in
goods production, lGt, time spent investing in the stock of human capital, lHt,
and time spent working in the bank sector (F subscripts for Finance), denoted
by lFt:

lGt + lHt + lFt + xt = 1. (4)

Output of goods can be converted into physical capital, kt, without cost and
so is divided between consumption goods and investment, denoted by it, net of
capital depreciation. Thus, the capital stock used for production in the next
period is given by:

kt+1 = (1− δk)kt + it = (1− δk)kt + yt − ct. (5)

The human capital investment is produced using capital sHtkt and effective
labor lHtht, with AH > 0 and η ∈ [0, 1] , such that the human capital flow
constraint is

ht+1 = (1− δh)ht +AH(sHtkt)
1−η(lHtht)

η. (6)

With wt and rt denoting the real wage and real interest rate, the consumer re-
ceives nominal income of wages and rents, Ptwt (lGt + lFt)ht and Ptrt (sGt + sQt) kt,
a nominal transfer from the government, Tt, and dividends from the bank. The
consumer buys shares in the bank by making deposits of income at the bank.
Each dollar deposited buys one share at a fixed price of one, and the consumer
receives the residual profit of the bank as dividend income in proportion to the
number of shares (deposits) owned. Denoting the real quantity of deposits by
dt, and the dividend per unit of deposits as RFt, the consumer receives a nom-
inal dividend income of PtRFtdt. The consumer also pays to the bank a fee for
credit services, whereby one unit of credit service is required for each unit of
credit that the bank supplies the consumer for use in buying goods. With PFt
denoting the nominal price of each unit of credit, and qt the real quantity of
credit that the consumer can use in exchange, the consumer pays PFtqt in credit
fees.
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With other expenditures on goods, of Ptct, and physical capital investment,
Ptkt+1 − Pt(1− δk)kt, and on investment in cash for purchases, of Mt+1 −Mt,
and in nominal bonds Bt+1 −Bt(1 +Rt), where Rt is the net nominal interest
rate, the consumer’s budget constraint is:

Ptwt (lGt + lFt)ht + PtrtsGtkt + PtRFtdt + Tt (7)

≥ PFtqt + Ptct + Ptkt+1 − Pt(1− δk)kt +Mt+1 −Mt

+Bt+1 −Bt(1 +Rt).

The consumer can purchase the goods by using either money Mt or credit
services. With the lump sum transfer of cash Tt coming from the government at
the beginning of the period, and with money and credit equally usable to buy
goods, the consumer’s exchange technology is:

Mt + Tt + Ptqt ≥ Ptct. (8)

Since all cash comes out of deposits at the bank, and credit purchases are
paid off at the end of the period out of the same deposits, the total deposits are
equal to consumption. This gives the constraint that:

dt = ct. (9)

Given k0, h0, and the evolution of Mt (t ≥ 0) as given by the exogenous
monetary policy in equation (17) below, the consumer maximizes utility subject
to the budget, exchange and deposit constraints (7)-(9).

2.2 Banking Firm Problem

The bank produces credit that is available for exchange at the point of purchase.
The bank determines the amount of such credit by maximizing its dividend profit
subject to the labor and deposit costs of producing the credit. The production
of credit uses a constant returns to scale technology with effective labor and
deposited funds as inputs. In particular, with AF > 0 and γ ∈ (0, 1):

qt = AF e
vt (lFtht)

γ
d1−γ
t , (10)

where AF evt is the stochastic factor productivity.
Subject to the production function in equation (10), the bank maximizes

profit ΠFt with respect to the labor lFt and deposits dt:

ΠFt = PFtqt − PtwtlFtht − PtRFtdt. (11)

Equilibrium implies that:(
PFt
Pt

)
γAF e

vt

(
lFtht
dt

)γ−1

= wt; (12)
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(
PFt
Pt

)
(1− γ)AF e

vt

(
lFtht
dt

)γ
= RFt. (13)

These indicate that the marginal cost of credit,
(
PFt
Pt

)
, is equal to the marginal

factor price divided by the marginal factor product, or wt

γAF evt
(
lFtht
dt

)γ−1 , and
that the zero profit dividend yield paid on deposits is equal to the fraction of

the marginal cost given by
(
PFt
Pt

)
(1− γ)

(
qt
dt

)
.

2.3 Goods Producer Problem

The firm maximizes profit given by yt−wtlGtht−rtsGtkt, subject to a standard
Cobb-Douglas production function in effective labor and capital:

yt = AGe
zt(sGtkt)

1−α(lGtht)
α. (14)

The first order conditions for the firm’s problem yield the standard expressions
for the wage rate and the rental rate of capital:

wt = αAGe
zt

(
sGtkt
lGtht

)1−α
, (15)

rt = (1− α)AGe
zt

(
sGtkt
lGtht

)−α
. (16)

2.4 Government Money Supply

It is assumed that the government policy includes sequences of nominal transfers
as given by

Tt = ΘtMt = (Θ∗ + eut − 1)Mt, Θt = [Mt −Mt−1]/Mt−1, (17)

where Θt is the growth rate of money and Θ∗ is the stationary gross growth
rate of money.

2.5 Definition of Competitive Equilibrium

The representative agent’s optimization problem can be written recursively as:

V (s) = max
c,x,lG,lH,lF ,sG,sH ,q,d,k′,h′,M ′

{u(c, x) + βEV (s′)} (18)

subject to the conditions (3) to (9), where the state of the economy is denoted
by s = (k, h,M,B; z, u, v) and a prime (’) indicates the next-period values. A
competitive equilibrium consists of a set of policy functions c(s), x(s), lG(s),
lH(s), lF (s), sG(s), sH(s), q(s), d(s), k′(s), h′(s),M ′(s), B′ (s) pricing functions
P (s), w(s), r(s), RF (s), PF (s) and a value function V (s), such that:
(i) the consumer maximize utility, given the pricing functions and the policy

functions, so that V (s) solves the functional equation (18);
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(ii) the goods producer maximizes profit similarly, with the resulting func-
tions for w and r being given by equations (15) and (16);
(iii) the bank firm maximizes profit similarly in equation (11) subject to the

technology of equation (10)
(iv) the goods, money and credit markets clear, in equations (7) and (14),

and in (8), (17), and (10).

3 General Equilibrium Taylor Condition

The ‘Taylor condition’is now derived as an equilibrium condition of the Benk
et al. (2010) model described in the previous section. Beginning from the
first-order conditions of the model, we obtain:

1 = βEt

{
c−θt+1x

ψ(1−θ)
t+1

c−θt x
ψ(1−θ)
t

R̃t

R̃t+1

Rt+1

πt+1

}
, (19)

where R and π are gross rates of nominal interest and inflation, respectively; R̃t
is 1 plus a ‘weighted average costs of exchange, with weights of mc on the money
cost Rt − 1 and 1− m

c on the average credit cost of γ (Rt − 1) :

R̃t = 1 +
mt

ct
(Rt − 1) + γ

(
1− mt

ct

)
(Rt − 1).

mt
ct
is the consumption normalized money demand, i.e. the inverse of the con-

sumption velocity of money. In effect, equation (19) augments a standard con-
sumption Euler equation with the growth rate of this average cost of exchange.
If all transactions are conducted using money (mt/ct = 1) then equation (19)
reverts back to the familiar consumption Euler equation which would feature as
an equilibrium condition of a standard CIA model without a money alternative.3

For any variable zt, define ẑt ≡ ln zt− ln z, where the absence of a time sub-
script denotes a BGP stationary value, and define ĝz,t+1 ≡ ln zt+1− ln zt, which
approximates the growth rate at time t+ 1 for suffi ciently small zt. Consider a
log-linear approximation of (19) evaluated around the BGP :

0 = Et

{
θĝc,t+1 − ψ (1− θ) ĝx,t+1 + ĝR̃,t+1 − R̂t+1 + π̂t+1

}
.

Rearranging this in terms of R̂t gives the Taylor condition expressed in log-
deviations from the BGP equilibrium:

R̂t = Et {Ωπ̂t+1 + Ωθĝc,t+1 − Ωψ (1− θ) ĝx,t+1 (20)

+
(1− γ)

(
1− m

c

)
R
[
1− (1− γ)

(
1− m

c

)] [(R− 1)
m
c

1− m
c

ĝm
c ,t+1 − R̂t+1

]}
,

3The nominal interest rate and inflation both enter equation (19) with a one period lead.
This is consistent with Carlstrom and Fuerst’s (2001) "cash in advance timing" which contrasts
with their "cash when I’m done timing", where both the nominal interest rate and inflation
enter the Euler equation contemporaneously. Carlstrom and Fuerst (2001) reject the latter
for CIA models.
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where Ω ≡ 1 +
(1−γ)(1−mc )

R[1−(1−γ)(1−mc )]
≥ 1. The Taylor condition (20) can now be

expressed in net rates and absolute deviations from the BGP equilibrium, as
demonstrated by the following proposition.

Proposition 1 An equilibrium condition of the economy is in the form of the
Taylor Rule (Orphanides, 2008) that sets deviations of the short-term nomi-
nal interest rate from some baseline path in proportion to deviations of target
variables from their targets:

Rt −R = ΩEt (πt+1 − π) + ΩθEt
(
gc,t+1 − g

)
− Ωψ (1− θ)Etgx,t+1 (21)

+
(1− γ)

(
1− m

c

)
R
[
1− (1− γ)

(
1− m

c

)] [(R− 1)
m
c

1− m
c

Etgm
c ,t+1 − Et

(
Rt+1 −R

)]
.

where Ω ≥ 1, and for a given w, then ∂Ω
∂R > 0 and ∂Ω

∂AF
> 0, and the target

values are equal to the balanced growth path equilibrium values.4

Proof. Since the BGP solution for normalized money demand is:

0 ≤ m

c
= 1−AF

(
(R− 1) γAF

w

) γ
1−γ

≤ 1,

then Ω ≡ 1 +
(1−γ)(1−mc )

R[1−(1−γ)(1−mc )]
≥ 1 and, given w, ∂Ω

∂R ≥ 0 and ∂Ω
∂AF

≥ 0.

For a linear production function of goods, w is the constant marginal product
of labor, but more generally w is endogenous and will change; however this
change in w is quantitatively small compared to changes in R and AF , so that the
derivatives above almost always hold true. Note that for a unitary consumption
velocity of money, the latter two velocity growth and forward interest terms
drop out of the equation (21)
The term in π̄ in equation (21) can be compared to the inflation target that

features in many interest rate rules (e.g. Taylor, 1993; Clarida et al., 2000).
This is usually set as an exogenous constant in a conventional rule but represents
the BGP rate of inflation in the Taylor condition.5 The term in consumption
growth is similar, but not identical, to the first difference of the output gap
that features in the so-called ‘speed limit’rule (Walsh, 2003). Alternatively, the
term in the growth rate of leisure time can be compared to the unemployment
rate which sometimes features in conventional interest rate rules in place of the
output gap.6

Equation (21) also contains two terms which are not usually found in stan-
dard monetary policy reaction functions. First, there is a term in the growth

4This is the the Brookings project form of the Taylor rule as described in Orphanides
(2008).

5Although see Ireland (2007) for an example of a conventional interest rate rule with a
time-varying inflation target.

6For example, Mankiw (2001) includes the unemployment rate in an interest rate rule and
Rudebusch (2009) includes the ‘unemployment gap’.
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rate of the real (consumption normalized) demand for money. Conventional
interest rate rules are usually considered in the context of models which omit
monetary relationships and thus money demand does not feature directly in
the model, let alone the policy rule.7 Secondly, the Taylor condition contains a
term in the expected future nominal interest rate. This contrasts with the lagged
nominal interest term which is often used to capture ‘interest rate smoothing’
in a conventional rule (e.g. Clarida et al., 2000).
In general, the coeffi cient on inflation in (21) exceeds unity (Ω > 1). This

replicates the ‘Taylor principle’whereby the nominal interest rate responds more
than one-for-one to (expected future) inflation deviations from ‘target’. How-
ever, the inflation coeffi cient in the Taylor condition is a function of the BGP
nominal interest rate (R), the consumption normalized demand for real money
balances (m/c) and the effi ciency with which the banking sector transforms
units of deposits into units of the credit service, as reflected by the magnitude
of (1− γ). Furthermore, higher productivity in the banking sector (AF ) causes a
higher velocity and implies a larger inflation coeffi cient in the Taylor condition.
The magnitude of Ω clearly does not reflect a policymaker reaction to inflation
in the conventional, ‘reaction function’sense.8

Equation (21) can alternatively be rewritten in terms of the consumption
velocity of money, Vt ≡ ct

mt
, and the productive time, or ‘employment’, growth

rate (l ≡ lG + lH + lF = 1− x). Using the fact that x̂t = − 1−x
x l̂t:

Rt −R = ΩEt (πt+1 − π) + ΩθEt
(
gc,t+1 − g

)
+ Ωψ (1− θ) l

1− lEtgl,t+1

−ΩV EtgV,t+1 − (Ω− 1)Et
(
Rt+1 −R

)
. (22)

Where overbarred terms again denote net rates and

ΩV ≡
(R− 1)

R

(
(1− γ)mc

γ + (1− γ) mc

)
.

Proposition 2 For the Taylor condition of equation (22), it is always true that
0 ≤ ΩV ≤ 1 ≤ Ω.

7Shifts in the demand for money are perfectly accommodated by adjustments to the money
supply in order to maintain the rule-implied nominal interest rate. This, it is claimed, renders
the evolution of the money supply an operational detail which need not be modelled directly
(e.g. Woodford, 2008).

8Unlike Sørensen and Whitta-Jacobsen’s (2005, pp.502-505) quantity theory based equi-
librium condition, the inflation coeffi cient in (21) exceeds unity for any (admissible) interest
elasticity of money demand. In their expression, the inflation coeffi cient falls below unity if
the interest (semi) elasticity of money demand exceeds one in absolute value. In the Benk
et al. (2010) model, the coeffi cient on inflation would exceed unity even in this case but the
central bank would not wish to increase the money supply growth rate to this extent because
seigniorage revenues would begin to recede as the elasticity increases beyond this point.
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Proof.

Ω ≡ 1 +
(1− γ)

(
1− m

c

)
R[1− (1− γ)

(
1− m

c

)
]
≥ 1;

m

c
= 1−A

1
1−γ
F

[
(R− 1) γ

w

] γ
1−γ

≤ 1;

1 ≥ (1− γ)
(

1− m

c

)
≥ 0; ⇒ 0 ≤ ΩV ≡

(R− 1) (1− γ)

R

(
m
c

1− (1− γ)
(
1− m

c

)) ≤ 1;

⇒ 0 ≤ ΩV ≤ 1 ≤ Ω.

Note that at the Friedman (1969) optimum of (gross) R = 1, then m
c = 1,

ω = 0, and the velocity coeffi cient is ΩV = 0. The velocity growth term only
matters when the nominal interest rate and inflation differ from the Friedman
(1969) optimum and fluctuate. In turn, this has implications for Ω = 1 +(

(1−γ)(1−mc )
R[1−(1−γ)(1−mc )]

)
, since when R = 1, then (1− γ)

(
1− m

c

)
= 0, and Ω = 1.

For m
c below one (i.e. velocity above one), which is true for most practical

experience, the model’s equivalent of the ‘Taylor principle’, Ω > 1, holds.

Corollary 3 Given w, then ∂Ω
∂R ≥ 0, ∂ΩV

∂R ≥ 0, ∂Ω
∂AF

≥ 0, ∂ΩV
∂AF

≤ 0.

Proof. This comes directly from the definitions of parameters above.
A higher target R can be accomplished only by a higher BGP money supply

growth rate. This would in turn make the inflation coeffi cient Ω larger, and so
also the consumption growth coeffi cient (Ωθ), and the forward interest rate and
velocity coeffi cients would become more negative. A higher credit productivity
factor AF , and so a higher velocity, causes a higher inflation coeffi cient and a
more negative response to the forward-looking interest term but a less negative
coeffi cient on the velocity growth term.
Note that with exogenous growth, the above Taylor condition would appear

to look identical. However, under exogenous growth the targeted inflation rate
and growth rate of the economy are unrelated and exogenously specified. Under
endogenous growth, the targets are instead the endogenously determined BGP
values: for inflation, the growth rate, and the nominal interest rate. And all of
these are determined in part by the long run stationary money supply growth
rate Θ∗, which is exogenously given. In turn, this Θ∗ translates directly into
a long run inflation target accepted by the central bank, such as two percent.
So the model assumes only this target of a long run money supply growth, or
alternatively, the long run inflation rate target.

3.1 Misspecified Taylor Condition with Output Growth

It is not surprising to find that the growth rate of consumption appears in
equation (22) rather than the output growth rate given that the derivation of the
Taylor condition begins from the consumption Euler equation (19). However,
the Taylor condition can be rewritten to include an output growth term and thus
correspond more closely to standard Taylor rule specifications, in particular the
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‘speed limit’rule considered by Walsh (2003). To derive this alternative rule,
consider that the equation, yt = ct + it, implies that ŷt = c

y ĉt + i
y ît, with

ît = k
i

[
k̂t − (1− δ) k̂t−1

]
. The growth rate of investment can be understood

as the acceleration of the growth of capital gross of depreciation. The Taylor
condition rewrites as

Rt −R = ΩEt (πt+1 − π) + Ωθ

[
y

c
Et
(
gy,t+1 − g

)
− i

c
Et
(
gi,t+1 − g

)]
(23)

+Ωψ (1− θ) l

1− lEtgl,t+1 − ΩV EtgV,t+1 − (Ω− 1)Et
(
Rt+1 −R

)
.

A term in investment growth does not appear in standard, exogenously specified
Taylor rules but plays a role as part of what is interpreted as growth in the
output gap in this Taylor condition with output growth. Equation (23) forms
the basis for the two misspecified estimating equations considered in Section
5. The first misspecified estimating equation simply replaces the consumption
growth term in equation (22) with an output growth term as follows:

Rt −R = ΩEt (πt+1 − π) + Ωθ
[
Et
(
gy,t+1 − g

)]
(24)

+Ωψ (1− θ) l

1− lEtgl,t+1 − ΩV EtgV,t+1 − (Ω− 1)Et
(
Rt+1 −R

)
.

As the comparison between equation (23) and equation (24) shows, such an
estimating equation erroneously overlooks the weighting on the output growth
rate (yc ) and omits the term in the investment growth rate. Replacing con-
sumption growth with output growth without an additional term in investment
therefore misrepresents the structure of the underlying, Benk et al. (2010) model
and as such equation (24) is misspecified. Note that with no physical capital in
the economy, such a Taylor condition as above would be the correct equilibrium
condition of the economy.

3.2 Misspecified Standard Taylor Rule

The second misspecified model erroneously imposes yet more restrictions on
equation (23). Imposing the same restrictions used to arrive at equation (24)
but also dropping the terms in productive time and velocity gives:

Rt −R = ΩEt (πt+1 − π) + Ωθ
[
Et
(
gy,t+1 − g

)]
(25)

− (Ω− 1)Et
(
Rt+1 −R

)
.

This can be interpreted as a conventional interest rate rule with a forward-
looking ‘interest rate smoothing’ term; the additional restriction that Ω =
1 would replicate a standard interest rate rule without interest rate smooth-
ing. Once again, equation (25) does not accurately represent an equilibrium
condition of the Benk et al. (2010) economy and is therefore misspecified. The
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Preferences
θ 1 Relative risk aversion parameter
ψ 1.84 Leisure weight
β 0.96 Discount factor

Goods Production
α 0.64 Labor share in goods production
δk 0.031 Depreciation rate of goods sector
AG 1 Goods productivity parameter

Human Capital Production
ε 0.83 Labor share in human capital production
δh 0.025 Depreciation rate of human capital sector
AH 0.21 Human capital productivity parameter

Banking Sector
γ 0.11 Labor share in credit production
AF 1.1 Banking productivity parameter

Government
σ 0.05 Money growth rate

Table 1: Parameters

first two terms would indeed be the correct equilibrium Taylor condition if the
economy had neither physical capital or the ability to use exchange credit to
avoid the inflation tax. Then Ω = 1, there is no velocity or forward interest rate
term, and the output growth term would enter as above.

4 Calibration

We follow Benk et al. (2010) in using postwar U.S. data to calibrate the model
(Table 1) and calculate a series of ‘target values’consistent with this calibration
(Table 2); please see Benk et al. for the shock process calibration.
Subject to this calibration, we derive a set of theoretical ‘predictions’ for

the coeffi cients of the Taylor condition (22). These values will subsequently be
compared to the coeffi cients estimated from artificial data simulated from the
model. Consider first the inflation coeffi cient (Ω). According to the calibration
and target values presented in tables 1 and 2, its theoretical value is

Ω = 1+
(1− γ)

(
1− m

c

)
R
[
1− (1− γ)

(
1− m

c

)] = 1+
(1− 0.11) (1− 0.38)

1.0944 (1− (1− 0.11) (1− 0.38))
= 2.125

And for R = 1, only cash is used so that mc = 1 and Ω reverts to its lower bound
of one. This also happens with zero credit productivity (AF = 0), in which case
only cash is used in exchange.
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g 0.024 Avg. annual output growth rate
π 0.026 Avg. annual inflation rate
R 0.0944 Nominal interest rate
lG 0.248 Labor used in goods sector
lH 0.20 Labor used in human capital sector
lF 0.0018 Labor used in banking sector
i/y 0.238 Investment-output ratio in goods sector
m/c 0.38 Share of money transactions
x 0.55 Leisure time
l ≡ 1− x 0.45 Productive time

Table 2: Target Values

The remaining coeffi cients, except for velocity, are simple functions of the
inflation coeffi cient. The consumption growth coeffi cient is Ωθ, which with θ =
1 for log-utility should simply take the same magnitude as the coeffi cient on
inflation (θΩ = 2.125). The coeffi cient on the productive time growth rate
is 0 = Ω (1− θ)ψ l

1−l because of log utility. However with leisure preference
calibrated at 1.84, and productive time (1 − x ≡ l) along the BGP equal to
0.45, the estimated value of the productive time coeffi cient can be interpreted
as implying a certain θ as factored by Ωψ l

1−l = (2.125) (1.84) 0.45
0.55 = 3.199.

Given the magnitude of the inflation coeffi cient, the coeffi cient on the forward
interest term is simply −(Ω − 1) = −1.125; the velocity coeffi cient −ΩV is
−0.065 :

− (R− 1)

R

(
(1− γ) mc[

1− (1− γ)
(
1− m

c

)]) = − (1.0944− 1)

1.0944

(
(1− 0.11) 0.38

(1− (1− 0.11) (1− 0.38))

)
.

At the Friedman (1969) optimum (R = 1), ΩV = 0. In this case the omission
of the term in velocity growth in the estimation exercises that follow would be
innocuous but this is not true in general.

5 Artificial Data Estimation

The structural model which underpins the general equilibrium Taylor condi-
tion forms the basis for the data generating process of the simulated data. In
particular, the model introduced in Section 2 is simulated using the calibra-
tion provided in Section 4 in order to generate 1000 alternative ‘joint histories’
for each of the variables in equation (22), where each history is 100 periods
in length. To do so, 100 random sequences for the shock vector innovations
are generated. Control functions of the log-linearized model are then used to
compute sequences for each variable. Each observation within a given history
may be thought of as an annual period given the frequency considered by the
Benk et al. (2010) model. The data set can therefore be viewed as comprising
of 1000, ‘100-year’, samples of artificial data.
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5.1 Estimation Methodology

This section presents the results of estimating a ‘correctly specified’estimating
equation based upon the ‘true’ theoretical relationship (22) against artificial
data generated from the Benk et al. (2010) model.9 In a similar manner, two
alternative estimating equations are evaluated using this same data set. Since
these alternative estimating equations differ from the expression based upon the
‘true’theoretical relationship, they necessarily constitute misspecified empirical
models.10

Prior estimation, the simulated data is filtered alternatively by 1) a Hodrick-
Prescott (HP) filter with a smoothing parameter selected in accordance with
Ravn and Uhlig (2002); 2) a Christiano and Fitzgerald (2003) band pass filter
which uses a 3-8 window that is standard for the ‘business cycle’frequency; and
3) a Christiano and Fitzgerald (2003) band pass filter which uses a 2-15 window
in order to retain lower frequency trends in the data as well, in particular as in
Comin and Gertler’s (2006) ‘medium-term cycle’.11 A priori, the 2-15 band pass
filter may be regarded as the ‘most relevant’to the underlying theoretical model
because shocks in the model can cause low frequency events during the business
cycle such as a change in the permanent income level without it returning to its
previous level.12

The first estimation technique considered is OLS, as used by Taylor (1999)
in the context of a contemporaneous interest rate rule. However, because ex-
pected future variables may be correlated with the error term we seek a suitable
set of instruments to proxy for these terms.13 Two instrumental variables (IV)
techniques are considered and each differs by the instrument set employed. The
first is a two stage least squares (2SLS) estimator under which the first lags of
inflation, consumption growth, productive time growth and velocity growth and
the second lag of the nominal interest rate (since the first lag is the dependent
variable) are used as instruments. Adding a constant term to the instrument set
yields a 2SLS estimator with no over-identifying restrictions. In using lagged

9The exercise conducted here is similar to those conducted by Fève and Auray (2002), for
a standard CIA model, and Salyer and Van Gaasbeck (2007), for a ‘limited participation’
model.
10We acknowledge that in a full information maximum likelihood estimation that uses all

of the equilibrium conditions of the economy we may be able to recover almost exactly the
theoretical coeffi cients of the Taylor condition; we leave that exercise as an important part of
future research that encompasses the entire alternative model; and then we could also compare
it to the standard three equation central bank policy model.
11Their ‘medium-term cycle’is defined using a 2-200 band pass filter for quarterly data; the

general principle is to retain elements of the data that the HP and 3-8 filters would ordinarily
consign to the ‘trend’.
12The filtering procedure takes account of the Siklos and Wohar (2005) critique of empirical

Taylor rule studies which do not address the non-stationarity of the data. Standard ADF and
KPSS tests (results not reported) suggest that the filtered data considered here is stationary.
Accordingly, the filters do not implement a de-trending procedure.
13Empirical studies usually deal with expected future terms either by replacing them with

realised future values and appealing to rational expectations for the resulting conditional
forecast errors (e.g. Clarida et al., 1998, 2000) or by using private sector or central bank
forecasts as empirical proxies (e.g. Orphanides, 2001; Siklos and Wohar, 2005).
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terms as instruments we exploit the fact that such terms are ‘pre-determined’
and thus not susceptible to the simultaneity problem which motivates the use of
IV techniques. The 2SLS procedure applies a Newey-West adjustment for het-
eroskedasticity and autocorrelation (HAC) to the coeffi cient covariance matrix.
The second IV procedure is a generalized method of moments (GMM) es-

timator under which three additional lags of inflation, consumption growth,
productive time growth and velocity growth and two further lags of the nomi-
nal interest rate are added to the instrument set.14 Expanding the instrument
set in this manner reduces the sample size available for each of the 1000 esti-
mation runs but enables the validity of the instrument set to be assessed using
the Hansen J-test. The GMM estimator employed iterates on the weighting
matrix in two steps and applies a HAC adjustment to the weighting matrix
using a Bartlett kernel with a Newey-West fixed bandwidth.15 A similar HAC
adjustment is also applied to the covariance weighting matrix.
Results are presented in three sets of tables, one set for each estimating

equation, and are further subdivided according to the statistical filter applied
to the data. Alongside the estimates obtained from an ‘unrestricted’estimating
equation, each table also reports estimates obtained from a ‘restricted’estimat-
ing equation which arbitrarily omits the forward interest rate term (β5 = 0).
This arbitrary restriction demonstrates the importance of the dynamic term in
equation (22). Each table of results presents mean coeffi cient estimates along
with the standard error of these estimates (as opposed to the mean standard
error). The figures in square brackets report the number of coeffi cients esti-
mated to be statistically different from zero at the 5% level of significance and
this term is used as an indication of the ‘precision’of the estimates rather than
the mean standard error. An ‘adjusted mean’figure is also reported for each
coeffi cient; this is obtained by setting non statistically significant coeffi cient es-
timates to zero when calculating the averages. The tables also report mean
R-square and mean adjusted R-square statistics along with mean P-values for
the F-statistic for overall significance (these cannot be computed for the GMM
estimator) and mean P-values for the Hansen J-statistic which tests the va-

14Carare and Tchaidze (2005, p.15) note that the four-lags-as-instruments specification is
the standard approach in the interest rate rule literature (e.g. Orphanides, 2001). However,
we preserve the sample size of each estimation run rather than add an additional (fifth) lag
of the expected future nominal interest rate to the GMM instrument set. The 2SLS and
GMM estimators yield identical estimates if the instrument set for the latter is restricted
to match that of the former. Note that although the GMM procedure in general corrects for
autocorrelation and heteroskedasticity for actual data estimation, in estimating with simulated
data we use lags as instruments for pre-determined variables that are free from simultaneity
bias. The instruments may be ’good’because the data is serially correlated but no further
lags are needed for the estimating equation itself. For actual data, Clarida et al. (QJE, 2000,
p.153) use a GMM estimator "with an optimal weighting matrix that accounts for possible
serial correlation in [the error term]" but they also add two lags of the dependent variable to
their estimating equation on the basis that this "seemed to be suffi cient to eliminate any serial
correlation in the error term." (p.157), implying that the GMM correction was insuffi cient.
15Jondeau et al. (2004, p.227) state that: "To our knowledge, all estimations of the forward-

looking reaction function based on GMM have so far relied on the two-step estimator." They
proceed to consider more sophisticated GMM estimators but nevertheless identify advantages
to the "simple approach" (p.238) adopted in the literature.
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lidity of the instrument set (these can only be calculated in the presence of
over-identifying restrictions), and mean Durbin-Watson (D-W) statistics which
test for autocorrelation. The number of estimation runs for which the null hy-
pothesis of the F-statistic is rejected and the number for which the J-statistic
is not rejected are reported alongside the relevant P-values and the number of
estimation runs for which the D-W test statistic exceeds its upper critical value
is reported alongside this test statistic.16

5.2 General Taylor Condition

Tables 3-5 present estimates obtained from the following ‘correctly specified’
estimating equation:

Rt = β0+β1Etπt+1+β2Etgc,t+1+β3Etgl,t+1+β4EtgV,t+1+β5EtRt+1+εt. (26)

Expected future variables on the right hand side are obtained directly from the
model simulation procedure and are instrumented for as described above.
The key result is that Tables 3-5 consistently report an inflation coeffi cient

which exceeds unity for the empirical model which most accurately reflects the
underlying theoretical model. This result is found to be robust to the statistical
filter applied to the data and to the estimator employed, subject to the estimator
providing a ‘precise’set of estimates. The forward interest rate term is also found
to be important in terms of generating a coeffi cient on inflation consistent with
the underlying, Benk et al. (2010), model. Arbitrarily omitting this dynamic
term yields much smaller estimates of the inflation coeffi cient to the extent that
most of the estimates now fall below the economically significant threshold of
unity.
In terms of the general features of the results obtained from the unrestricted

specification, the OLS and GMM procedures tend to generate a greater num-
ber of statistically significant estimates than the 2SLS estimator. Focusing on
Table 5, the 2SLS estimator provides a statistically significant estimate for the
inflation coeffi cient for only 580 of the 1000 simulated histories in Table 5 while
the OLS and GMM estimators both return 1000 significant estimates. The con-
stant term, for which very few statistically significant estimates are generated,
stands as an exception but this finding is consistent with equation (22). The
OLS and GMM procedures generate reasonably large R-square and adjusted
R-square statistics, whereas negative R-square statistics are obtained from the
simple 2SLS estimator, possibly symptomatic of an inadequate instrument set.
Expanding the instrument set in order to implement the GMM procedure leads
to 1000 rejections of the J-test for instrument validity across all three filters.
One might also be wary of the low number of decisive D-W statistic rejections
produced by the OLS procedure, although the mean D-W statistic remains ‘rea-
sonably large’in each case; 1.56 for the 2-15 filter, for example. The results for

16The D-W count includes only decisive rejections, i.e. it excludes test statistics which lie
in the inconclusive region of the test’s critical values.
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the 3-8 band pass filter in Table 4 are unusual in the sense that all three esti-
mation procedures produce a very low number of D-W statistic rejections. For
the other two filters, this undesirable result is specific to the OLS estimator.
Consider in particular the results presented in Table 5 for the 2-15 band

pass filter, i.e. the filter which retains more of the low frequency components
of the simulated data. The mean coeffi cient on inflation is estimated to be
2.179 using the OLS estimator and 2.306 using the GMM estimator.17 These
estimates compare favorably to the theoretical value of Ω = 2.125. The right
hand side of Table 5 shows that the mean of the estimated inflation coeffi cients
falls below unity when the the forward interest rate term is arbitrarily omitted
from the estimating equation; a precise mean estimate of 0.614 is obtained from
the OLS procedure and a similarly precise mean estimate of 0.964 is obtained
from the GMM procedure. Similar OLS and GMM estimates are obtained for
the coeffi cient on inflation under the two alternative band pass filters in Tables
4 and 5, both in terms of the mean coeffi cient estimates for the unrestricted
specification and in terms of the decline in magnitude induced when β5 = 0 is
arbitrarily imposed upon the estimating equation.
Compared to the estimated inflation coeffi cients, the estimated coeffi cients

on consumption growth and productive time growth diverge more from their
theoretical predictions for the ‘unrestricted’ estimating equation. Under log
utility (θ = 1), the former should take the same magnitude as the coeffi cient
on inflation and the latter should take a value of zero. The mean estimates of
both of these theoretical parameters can be used to ‘back-out’an estimate of the
coeffi cient of relative risk aversion (θ). Firstly, using the mean GMM estimate for
the coeffi cient on consumption growth of 0.302 (Table 5) and the corresponding
estimate of Ω, an implied estimate of θ can be calculated as β2β1 = 0.302

2.306 = 0.131,
which is smaller than the baseline calibration of θ = 1. Alternatively, the
relationship β3 = β1ψ (1− θ) l/(1 − l), which is obtained from equation (22)
with Ω replaced by its estimate β1, can also be used to obtain an implied value
of θ. Using the estimates presented in Table 5, the implied estimate of θ is
1.103, which is much closer to the calibrated value of θ = 1.
Table 5 also reports that both the OLS and GMM procedures generate 1000

statistically significant estimates for the coeffi cient on velocity growth under the
unrestricted estimating equation and that the mean of the estimated coeffi cients
is correctly signed for both estimators. The mean of the point estimates are
reported as−0.196 and−0.269 for OLS and GMM respectively; these are smaller
than the theoretical prediction of −0.065. Similar estimates are obtained under
the HP and 3-8 filters. Finally, Table 5 reports mean estimates of −1.761
(OLS) and −1.729 (GMM) for the forward interest rate coeffi cient compared to
a theoretical value of −1.125. The mean estimates are therefore correctly signed
but, again, smaller than the theoretical prediction.

17The discussion focuses on the OLS and GMM estimators because they produce more
‘precise’ estimates and also because the OLS estimator tends to reject the null hypothesis
of the F-statistic more frequently than the 2SLS estimator (1000 vs. 907 rejections in Table
5, for example). The OLS regressions are possibly affl icted by autocorrelation, however, as
discussed above.
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The standard, ‘reaction function’interpretation of a coeffi cient on inflation
in excess of unity is that policymakers adhere to a rule which reflects their in-
tolerance towards inflation deviations from target. However, this interpretation
is not applicable to the Taylor condition. The general result that the coeffi -
cient on inflation exceeds unity is a consequence of a simple money growth rule
not a measure of policymakers’ attitude towards inflation. Analogously, the
break-down of the Taylor principle under the ‘restricted’estimating equation in
the following subsection cannot be interpreted as a softening of policymakers’
attitude towards inflation; it simply emanates from model misspecification.

5.3 Taylor Condition with Output Growth

The same estimation procedure is now applied to an estimating equation which
replaces the term in the consumption growth rate in equation (26) with a term
in output growth as follows:

Rt = β0+β1Etπt+1+β2Etgy,t+1+β3Etgl,t+1+β4EtgV,t+1+β5EtRt+1+εt. (27)

Crucially, the simulated data remains unchanged therefore equation (27)
represents a misspecified version of the ‘correct’ estimating equation, which
continues to be equation (26). In particular, equation (27) can be seen to
correspond to the misspecified Taylor condition (24).
The results are similar across the HP, the 3-8 band-pass and the 2-15 band-

pass filters. As the latter gives the most statistically significant results for
variable estimation, here only that table is presented, as Table 6, for equation
(27).18 Comparing the general features of the results to those presented in
Tables 3-5, there is a decline in the precision with which the coeffi cients are
estimated, a decline in the magnitude of the R-square and adjusted R-square
statistics and a decline in the number of rejections of the null hypothesis of the
F-statistic for joint significance. This is unsurprising given that an element of
misspecification has been introduced into the estimating equation. The number
of decisive rejections of the null hypothesis of the D-W test statistic also tends
to decline although the GMM procedure applied to 2-15 filtered data still rejects
for 94.5% of the estimation runs.
The estimated coeffi cients on inflation are now found to be substantially

greater than the coeffi cients obtained from the ‘correctly specified’estimating
equation (26). For instance, the GMM estimate for the unrestricted estimating
equation rises from 2.306 in Table 5 to 5.274 in Table 6 (or 5.235 according to
the adjusted mean). Similarly, the OLS estimate increases from 2.179 to 4.219
(or 4.185 adjusted). Corresponding upward shifts in the estimated inflation
coeffi cient are found when comparing Table 4 to the 3-8 band pass filter results
(not shown) and even larger increases are found for the HP filtered data (not
shown). Therefore, the estimates diverge further from the theoretical value of
Ω = 2.125 under this particular form of misspecification.
18The instrument sets used for the 2SLS and GMM estimators are modified by replacing

consumption growth with output growth but remain unchanged in terms of the number of
lags included.
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HP filtered data, Unrestricted Assumed β5 = 0
where HP λ = 6.25 OLS 2SLS GMM OLS 2SLS GMM

β0 -9.68E-07 [0] -2.04E-07 [0] 8.09E-07 [17] -7.60E-07 [0] -4.78E-07 [0] -7.57E-08 [8]

Standard error 2.87E-05 2.15E-05 3.15E-05 2.39E-05 1.67E-05 4.29E-05

Adjusted mean - - -4.27E-08 - - 2.59E-07

Etπt+1 2.019 [1000] 2.309 [691] 2.299 [1000] 0.315 [830] 0.757 [397] 0.621 [925]

Standard error 0.248 1.488 0.268 0.126 0.856 0.265

Adjusted mean 2.019 1.800 2.299 0.293 0.475 0.614

Etgc,t+1 0.251 [1000] 0.336 [959] 0.293 [1000] 0.172 [1000] 0.313 [989] 0.231 [1000]

Standard error 0.024 0.096 0.020 0.020 0.048 0.025

Adjusted mean 0.251 0.324 0.293 0.172 0.311 0.231

Etgl,t+1 -0.243 [890] -0.536 [774] -0.374 [997] -0.281 [864] -0.530 [774] -0.427 [996]

Standard error 0.094 0.321 0.079 0.100 0.231 0.111

Adjusted mean -0.236 -0.448 -0.374 -0.265 -0.453 -0.427

EtgV,t+1 -0.137 [990] -0.267 [800] -0.212 [1000] -0.098 [889] -0.317 [888] -0.190 [992]

Standard error 0.031 0.228 0.033 0.036 0.109 0.056

Adjusted mean -0.137 -0.229 -0.212 -0.093 -0.293 -0.190

EtRt+1 -1.819 [1000] -2.338 [646] -2.005 [1000] N/A N/A N/A

Standard error 0.221 2.282 0.277

Adjusted mean -1.819 -1.692 -2.005

Mean;
R-square 0.789 <0 0.796 0.544 <0 0.482

Adjusted R-square 0.778 <0 0.785 0.525 <0 0.459

Pr(F-statistic) 2.35E-15 (1000) 0.015 (974) N/A 3.93E-09 (1000) 0.003 (992) N/A

Pr(J-statistic) N/A N/A 0.258 {1000} N/A 0.159 {482} 0.269 {1000}

Durbin-Watson 1.474 <151> 2.243 <1000> 2.194 <970> 1.732 <419> 2.145 <999> 2.047 <882>

Sample size (1000x) 99 98 96 99 98 96

Notes:

· ‘Standard error’measures the variation in the coeffi cient estimates.
· ‘Adjusted mean’assigns a value of zero to non statistically significant estimates.
· F-statistic: null hypothesis of no joint significance of the independent variables (not available under GMM).
· J-statistic: null hypothesis that the instrument set is valid (only available if there are over-identifying restrictions).
· [ ] records the number of statistically significant coeffi cient estimates, () the number of F-statistic rejections,
and {} the number of J-statistic non-rejections (all at the 5% level of significance).

· <> records the number of times the D-W statistic exceeds its upper critical value (i.e. rejects null of positive A.C.)

Table 3: Taylor Condition Estimation, HP Filtered Data, Ravn and Uhlig (2002)
Smoothing Parameter, 100 Years Simulated, 1000 Estimations Average.
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BP Filter, Unrestricted Assumed β5 = 0
3-8 Window OLS 2SLS GMM OLS 2SLS GMM

β0 -7.57E-07 [0] 6.54E-06 [0] -7.10E-07 [3] 7.73E-07 [0] -2.86E-06 [0] -1.51E-06 [1]

Standard error 1.65E-05 3.24E-04 2.09E-05 1.45E-05 4.37E-05 2.68E-05

Adjusted mean - - -1.83E-07 - - -9.81E-08

Etπt+1 2.166 [998] 2.484 [724] 2.423 [1000] 0.633 [969] 2.417 [965] 0.682 [974]

Standard error 0.391 32.906 0.298 0.195 1.125 0.222

Adjusted mean 2.166 2.141 2.423 0.628 2.291 0.679

Etgc,t+1 0.283 [1000] 0.304 [623] 0.314 [1000] 0.155 [1000] 0.175 [834] 0.168 [1000]

Standard error 0.043 7.324 0.027 0.029 0.074 0.030

Adjusted mean 0.283 0.231 0.314 0.155 0.160 0.168

Etgl,t+1 -0.237 [827] -0.573 [430] -0.312 [982] -0.222 [685] -0.595 [666] -0.268 [870]

Standard error 0.131 10.199 0.099 0.133 0.361 0.135

Adjusted mean -0.229 -0.193 -0.312 -0.195 -0.455 -0.259

EtgV,t+1 -0.152 [982] -0.453 [351] -0.174 [998] -0.174 [976] -0.604 [973] -0.194 [984]

Standard error 0.043 15.068 0.039 0.052 0.252 0.057

Adjusted mean -0.151 -0.128 -0.174 -0.173 -0.578 -0.193

EtRt+1 -2.026 [994] -1.532 [424] -2.289 [1000]

Standard error 0.435 116.012 0.339

Adjusted mean -2.024 -1.211 -2.289

Mean;
R-square 0.789 <0 0.842 0.576 <0 0.590

Adjusted R-square 0.778 <0 0.833 0.558 <0 0.572

Pr(F-statistic) 4.75E-10 (1000) 0.077 (874) N/A 2.08E-07 (1000) 0.005 (981) N/A

Pr(J-statistic) N/A N/A 0.213 {1000} N/A 0.344 {848} 0.249 {1000}

Durbin-Watson 1.568 <54> 1.653 <330> 1.517 <49> 1.728 <333> 1.728 <378> 1.715 <306>

Sample size (1000x) 99 98 96 99 98 96

Notes:

· ‘Standard error’measures the variation in the coeffi cient estimates.
· ‘Adjusted mean’assigns a value of zero to non statistically significant estimates.
· F-statistic: null hypothesis of no joint significance of the independent variables (not available under GMM).
· J-statistic: null hypothesis that the instrument set is valid (only available if there are over-identifying restrictions).
· [ ] reports the number of statistically significant coeffi cient estimates, () reports the number of F-statistic rejections,
and {} reports the number of J-statistic non-rejections (all at the 5% level of significance).

· <> records the number of times the D-W statistic exceeds its upper critical value (i.e. rejects null of positive A.C.)

Table 4: Taylor Condition Estimation, Band Pass Filtered Data (3-8 years), 100
Years Simulated, 1000 Estimations Average.
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BP Filter, Unrestricted Assumed β5 = 0
2-15 Window OLS 2SLS GMM OLS 2SLS GMM

β0 -2.26E-06 [0] 4.22E-05 [0] 2.54E-07 [22] -1.82E-06 [0] -2.46E-06 [0] 3.44E-06 [21]

Standard error 4.01E-05 0.001 4.82E-05 3.27E-05 4.83E-05 6.26E-05

Adjusted mean - - 4.25E-07 - - 9.03E-07

Etπt+1 2.179 [1000] 3.816 [580] 2.306 [1000] 0.614 [999] 1.127 [763] 0.964 [999]

Standard error 0.195 51.040 0.272 0.108 0.640 0.169

Adjusted mean 2.179 1.402 2.306 0.614 0.936 0.963

Etgc,t+1 0.277 [1000] 0.570 [730] 0.302 [1000] 0.170 [1000] 0.262 [851] 0.207 [1000]

Standard error 0.016 5.546 0.025 0.017 0.103 0.026

Adjusted mean 0.277 0.265 0.302 0.170 0.230 0.207

Etgl,t+1 -0.295 [997] -0.737 [526] -0.359 [999] -0.210 [732] -0.263 [405] -0.277 [935]

Standard error 0.067 8.208 0.085 0.088 0.203 0.111

Adjusted mean -0.294 -0.242 -0.359 -0.182 -0.152 -0.272

EtgV,t+1 -0.196 [1000] -0.347 [807] -0.269 [1000] -0.158 [998] -0.307 [944] -0.236 [1000]

Standard error 0.024 0.271 0.031 0.032 0.077 0.042

Adjusted mean -0.196 -0.273 -0.269 -0.158 -0.292 -0.236

EtRt+1 -1.761 [1000] -5.586 [335] -1.729 [1000]

Standard error 0.201 114.905 0.322

Adjusted mean -1.761 -0.712 -1.729

Mean;
R-square 0.830 <0 0.782 0.625 <0 0.522

Adjusted R-square 0.821 <0 0.770 0.609 <0 0.501

Pr(F-statistic) 2.50E-24 (1000) 0.051 (907) N/A 5.04E-10 (1000) 0.003 (985) N/A

Pr(J-statistic) N/A N/A 0.315 {1000} N/A 0.298 {757} 0.298 {1000}

Durbin-Watson 1.558 <141> 2.059 <972> 2.040 <881> 1.954 <864> 2.052 <998> 2.205 <977>

Sample size (1000x) 99 98 96 99 98 96

Notes:

· ‘Standard error’measures the variation in the coeffi cient estimates.
· ‘Adjusted mean’assigns a value of zero to non statistically significant estimates.
· F-statistic: null hypothesis of no joint significance of the independent variables (not available under GMM).
· J-statistic: null hypothesis that the instrument set is valid (only available if there are over-identifying restrictions).
· [ ] reports the number of statistically significant coeffi cient estimates, () reports the number of F-statistic rejections,
and {} reports the number of J-statistic non-rejections (all at the 5% level of significance).

· <> records the number of times the D-W statistic exceeds its upper critical value (i.e. rejects null of positive A.C.)

Table 5: Taylor Condition Estimation, Band Pass Filtered Data (2-15 years),
100 Years Simulated, 1000 Estimations Average.
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The incorrectly specified estimating equation also induces a substantial de-
crease in the estimated coeffi cients for the productive time growth rate and the
forward nominal interest rate. These estimates therefore tend to diverge further
from the theoretical predictions of the model. The estimated coeffi cient on the
productive time growth rate decreases from −0.294 to −2.073 (both adjusted
means) between Table 5 and Table 6 according to the OLS estimator and from
−0.359 to −2.790 for the GMM estimator, compared to the theoretical predic-
tion of β3 = 0. The GMM estimates of the forward interest rate term also
decrease from −2.005, −2.289 and −1.729 under the HP filter, 3-8 and 2-15
filters respectively to −12.868, −6.203 and −4.372 (adjusted means where ap-
propriate; HP and 3-8 results not shown). Again, the estimates diverge further
from theoretical value of −1.125.

The estimated coeffi cients for output growth in Table 6 are comparable to
those for consumption growth presented in Tables 3-5, despite the impact that
the misspecification has on the other estimates. For example, the OLS estimate
for β3 in Table 6 is 0.300 (adjusted) compared to the corresponding estimate
of 0.277 in Table 5. For the GMM estimator the coeffi cient on output growth
is 0.402 (adjusted) in Table 6 compared to the corresponding estimate of 0.302
reported in Table 5.
The velocity growth term is estimated precisely by the GMM estimator even

after the modification to the estimating equation. Estimates of β4 retain the
correct sign and are of a similar magnitude as under the correctly specified esti-
mating equation; for example, a GMM estimate of −0.190 in Table 6 compared
to a corresponding estimate of −0.269 in Table 5.
Considering the restricted specification (β5 = 0), the estimates undergo

similar changes as those obtained from the restricted version of the ‘correct’
estimating equation (26). The OLS and GMM estimators generate inflation
coeffi cients which often fall below unity in a manner incompatible with the
theoretical model from which the Taylor condition is derived, although there is
one notable exception to this for the GMM estimator in Table 6.
In short, the estimates obtained from applying equation (27) to the simulated

data show that adapting the estimating equation in a seemingly minor way can
have a substantial impact upon the reported estimates. The erratic results
obtained from this misspecified estimating equation provide an illustration of
the fundamental difference between the Taylor condition and a conventional
interest rate rule. Unlike a Taylor rule, the Taylor condition cannot be modified
in an ad hoc fashion.19 In order to make the progression from (26) to (27) in a
legitimate manner, one would need to alter the underlying model in some way
(excluding physical capital in particular). A new set of artificial data would
then need to be simulated from this alternative model prior to re-estimation.

19 In contrast, conventional interest rate rules are exogenously specified and thus amenable
to arbitrary modifications. Clarida et al. (1998), for example, add the exchange rate to the
standard Taylor rule and Cecchetti et al. (2000) and Bernanke and Gertler (2001) consider
whether policymakers should react to asset prices.
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BP Filter, Unrestricted Assumed β5 = 0
2-15 Window OLS 2SLS GMM OLS 2SLS GMM

β0 -3.66E-06 [0] 0.001 [0] 3.07E-06 [16] -9.34E-07 [0] -4.46E-06 [0] 2.80E-06 [5]

Standard error 6.19E-05 0.031 8.58E-05 2.43E-05 9.65E-05 6.42E-05

Adjusted mean - - -9.38E-07 - - 4.23E-07

Etπt+1 4.219 [971] -25.003 [189] 5.274 [961] 0.541 [941] 2.338 [882] 1.101 [990]

Standard error 1.715 1290.303 2.582 0.170 1.151 0.264

Adjusted mean 4.185 2.522 5.235 0.532 2.010 1.100

Etgy,t+1 0.303 [967] -2.019 [206] 0.406 [940] 0.038 [563] 0.211 [262] 0.082 [956]

Standard error 0.125 122.643 0.204 0.020 0.304 0.029

Adjusted mean 0.300 0.244 0.402 0.029 0.077 0.081

Etgl,t+1 -2.098 [959] 14.698 [211] -2.815 [954] -0.284 [424] -1.462 [353] -0.610 [941]

Standard error 0.892 825.197 1.417 0.189 1.740 0.232

Adjusted mean -2.073 -1.672 -2.790 -0.189 -0.655 -0.598

EtgV,t+1 -0.118 [884] 0.069 [310] -0.191 [970] -0.095 [733] -0.246 [587] -0.158 [923]

Standard error 0.042 16.979 0.064 0.043 0.164 0.061

Adjusted mean -0.113 -0.117 -0.190 -0.084 -0.161 -0.156

EtRt+1 -3.878 [907] 29.503 [128] -4.498 [849]

Standard error 1.812 1437.910 2.802

Adjusted mean -3.767 -1.757 -4.372

Mean;
R-square 0.361 <0 0.127 0.246 <0 <0

Adjusted R-square 0.327 <0 0.079 0.214 <0 <0

Pr(F-statistic) 0.001 (995) 0.379 (411) N/A 0.020 (924) 0.055 (829) N/A

Pr(J-statistic) N/A N/A 0.226 {1000} N/A 0.260 {682} 0.264 {1000}

Durbin-Watson 1.882 <699> 1.982 <868> 2.342 <945> 2.295 <1000> 2.145 <997> 2.728 <999>

Sample size (1000x) 99 98 96 99 98 96

Notes:

· ‘Standard error’measures the variation in the coeffi cient estimates.
· ‘Adjusted mean’assigns a value of zero to non statistically significant estimates.
· F-statistic: null hypothesis of no joint significance of the independent variables (not available under GMM).
· J-statistic: null hypothesis that the instrument set is valid (only available if there are over-identifying restrictions).
· [ ] reports the number of statistically significant coeffi cient estimates, () reports the number of F-statistic
rejections and {} reports the number of J-statistic non-rejections (all at the 5% level of significance).

· <> records the number of times the D-W statistic exceeds its upper critical value (i.e. rejects null of positive A.C.)

Table 6: Output Growth instead of Consumption Growth, Band Pass Filtered
data (2-15 years), 100 Years Simulated, 1000 Estimations Average.
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5.4 A Conventional Interest Rate Rule

The estimation procedure is now re-applied to the following estimating equation:

Rt = β0 + β1Etπt+1 + β2Etgy,t+1 + β5EtRt+1 + εt. (28)

This estimating equation corresponds to the misspecified representation of
the Taylor condition with output growth; equation (25). This can be interpreted
as a ‘dynamic forward-looking Taylor rule’for β5 6= 0 or a ‘static forward-looking
Taylor rule’under the restriction β5 = 0. Notably, the term in velocity growth is
absent from this expression. This omission would be expected to have a bearing
on the estimates because equations (26) and (27) produced many statistically
significant estimates for this term.
Results are again similar across the HP and two band-pass filters so only

the 2x15 band-pass results are presented, in Table 7, for equation (28).20 The
estimates are generally found to be poor in terms of the number of statistically
significant cases produced and in terms of mean R-square and adjusted R-square
statistics. This is unsurprising given that we have added yet another source
of misspecification to the estimating equation. However, the number of D-W
statistic rejections remains high for the HP (not shown) and the 2-15 filters,
while we obtain the same result of fewer decisive rejections for the 3-8 filter as
was obtained from the ‘correctly specified’estimating equation (not shown).
The estimated coeffi cient on inflation does not exceed unity for the three

filters and estimators considered according to the adjusted mean, these being
the appropriate figures to consult given the low number of statistically significant
estimates. The results are also comparatively weak in terms of the frequency
with which the null hypothesis of the F-statistic is rejected, the HP filtered data
gives particularly poor results in this regard, (not shown) and in terms of the
number of non-rejections of the null hypothesis of the Hansen J-test (not shown).
The latter finding calls into question the validity of the standard instrument set
used for the GMM estimator under equation (28).
The estimation results are similarly imprecise under the restricted specifica-

tion (β5 = 0) for the HP filter (not shown), although we now obtain a reasonable
number of significant estimates for the coeffi cient on inflation for the OLS and
GMM estimators in the 3-8 band-pass filter (not shown) and in Table 7. These
estimates are similar for the 3-8 band pass filter, 0.227 (adjusted mean, OLS)
and 0.282 (adjusted mean, GMM), but differ quite substantially for the 2-15
filter (0.317, OLS, compared to 0.892, GMM).
In short, replicating a conventional Taylor rule restricts the ‘true’estimating

equation to such an extent that the theoretical prediction that the coeffi cient
on expected inflation exceeds unity is not recovered even under the unrestricted
estimating equation. Results such as these when derived from an estimating

20The instrument set now comprises of four lags of expected future inflation, four lags of
expected future output growth, the second, third and fourth lags of the nominal interest rate
and a constant term for the GMM estimator or just the shortest of these lags and a constant
term for the exactly identified 2SLS estimator.
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BP Filter, Unrestricted Assumed β5 = 0
2-15 Window OLS 2SLS GMM OLS 2SLS GMM

β0 -6.03E-07 [0] -8.11E-05 [0] -2.84E-06 [7] -5.32E-07 [0] 1.85E-07 [0] -2.73E-07 [11]

Standard error 2.60E-05 0.008 1.16E-04 2.59E-05 2.98E-04 1.13E-04

Adjusted mean - - -1.12E-06 - - 4.92E-07

Etπt+1 0.311 [238] 12.975 [21] 0.142 [349] 0.327 [929] 1.493 [412] 0.895 [980]

Standard error 0.446 480.114 0.950 0.099 4.468 0.315

Adjusted mean 0.185 0.020 0.110 0.317 0.814 0.894

Etgy,t+1 0.020 [281] -0.666 [40] 0.019 [236] 0.021 [404] 0.027 [162] 0.031 [456]

Standard error 0.017 33.878 0.027 0.012 0.825 0.027

Adjusted mean 0.011 0.012 0.012 0.013 0.041 0.024

EtRt+1 0.007 [140] -5.714 [27] 0.909 [524] N/A N/A N/A

Standard error 0.473 387.875 0.999

Adjusted mean 0.010 0.101 0.781

Mean;
R-square 0.168 <0 <0 0.153 <0 <0

Adjust R-square 0.142 <0 <0 0.136 <0 <0

Pr(F-statistic) 0.030 (882) 0.527 (162) N/A 0.025 (889) 0.146 (602) N/A

Pr(J-statistic) N/A N/A 0.050 {340} N/A 0.351 (677) 0.058 (448)

Durbin-Watson 1.827 <848> 2.013 <974> 2.237 <991> 1.817 <780> 2.047 <996> 2.186 <990>

Sample size (1000x) 99 98 96 99 98 96

Notes:

· ‘Standard error’measures the variation in the coeffi cient estimates.
· ‘Adjusted mean’assigns a value of zero to non statistically significant estimates.
· F-statistic: null hypothesis of no joint significance of the independent variables (not available under GMM).
· J-statistic: null hypothesis that the instrument set is valid (only available if over-identifying restrictions).
· [ ] records the number of statistically significant coeffi cient estimates, () the number of F-statistic rejections
and {} the number of J-statistic non-rejections, at 5% level of significance.

· <> records the number of times the D-W statistic exceeds its upper critical value (i.e. rejects null of positive A.C.)

Table 7: Output Growth in a Standard Taylor Rule, Band Pass Filtered Data
(2-15 years), 100 Years Simulated, 1000 Estimations Average.

equation such as (28) might erroneously be interpreted to signify that the Tay-
lor principle is violated but this result is simply a product of a misspecified
estimating equation in the present context. Only if the model excluded physical
capital and set velocity to one, with β5 = 0, would such a model be valid and
so be expected to be well-estimated from simulated data.
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6 Alternative Interpretations of the Taylor Con-
dition

Consider two alternative expressions mathematically of the Taylor condition of
equation (22). First a backward-looking model is specified and discussed. Then
a credit version of the model is stated and briefly discussed.

6.1 Backward Looking Taylor Condition

Mathematically, the Taylor condition can also be formulated to have a lagged
dependent on the right hand side instead of the lead independent variable which
appears in equation (22). This yields a similar expression written in terms of
Rt+1 instead of Rt:

Rt+1 −R =
Ω

(Ω− 1)
Et (πt+1 − π) +

Ωθ

(Ω− 1)
Et
(
gc,t+1 − g

)
(29)

−
Ωψ(θ − 1) l

1−l
(Ω− 1)

Etgl,t+1 −
ΩV

(Ω− 1)
EtgV,t −

1

(Ω− 1)

(
Rt −R

)
.

While equation (29) compares better to interest rate rules which feature the
lagged dependent variable on the right hand side as an ‘interest rate smooth-
ing’term, the lead nominal interest rate now is the dependent variable. Such a
postulated model is more akin to a forecasting equation for the nominal interest
rate than to an interest rate condition that compares to the Taylor rule. More
fundamentally such a transformation raises the issue identified by McCallum
(2010). He argues that the equilibrium conditions of a structural model stipu-
late whether any given difference equation is forward-looking ("expectational")
or backward-looking ("inertial") and that the researcher is not free to alter
the direction of causality implied by the model as is convenient. The forward
looking representation of the Taylor condition (22) is the long accepted ratio-
nal expectations version; for example, Lucas (1980) suggests that the forward
looking "filters" suit models which feature an optimizing consumer. In fact, we
would argue that the timing of the cash-in-advance economy is such that our
forward-looking rule in equation (22) is the exact correct model, while the above
equation is consistent with the alternative "cash-when-your done" timing which
we do not employ (see Carlstrom and Fuerst, 2001).

6.2 Credit Interpretation of the Taylor Condition

Christiano et al. (2010) have considered how the growth rate of credit might be
included as part of a Taylor rule so that "allowing an independent role for credit
growth (beyond its role in constructing the inflation forecast) would reduce the
volatility of output and asset prices." The term on the growth of velocity can be
inversely interpreted as a growth rate of credit in the following way. Since Vt =
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)
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where g(1−mc ),t is the growth rate of normalized credit. The equivalent Taylor

condition to equation (22) is

Rt −R = ΩEt (πt+1 − π) + ΩθEt
(
gc,t+1 − g

)
+ Ωψ (1− θ) l

1− lEtgl,t+1

−Ω(1−mc )Etg(1−mc ),t+1 − ΩREt
(
Rt+1 −R

)
. (30)

The credit coeffi cient can be derived as Ω(1−mc ) ≡
(R−1)(1−γ)(mtct )

2

(1−γ)2
(1−γ)(1−mtct )

R[1−(1−γ)(1−mtct )]
≥

0. A positive expected credit growth rate decreases the current net nominal inter-
est rate Rt. With velocity set at one as in a standard cash-in-advance economy,
then neither the credit or velocity would enter the equation since either it does
not exist (credit) or it cannot change (velocity) over time.

7 Discussion

Expressing the monetary policy process in terms of the nominal interest rate
has the advantage of reconciling the language of economists who have tradi-
tionally depicted the money supply as the instrument of monetary policy with
the language of central bankers, who are more accustomed to conducting policy
deliberations in terms of a short-term interest rate (Mehrling, 2006). Alvarez et
al. (2001) caution that modelling monetary policy solely in terms of a nominal
interest rate rejects the quantity theory in spite of the strong empirical link be-
tween money growth, inflation and interest rates. Schabert (2003), for example,
uses the equilibrium conditions of a standard cash-in-advance (CIA) model in
order to derive the conditions under which a money supply rule and an inter-
est rate rule are ‘equivalent’, while Fève and Auray (2002) generate simulated
data from a similar model and demonstrate that an interest rate rule can be
spuriously recovered from this data even though monetary policy is modelled in
terms of a money growth rule.
This paper has derived an expression similar to a conventional interest rate

rule as an equilibrium condition of an endogenous growth model with endoge-
nous velocity in which monetary policy is characterized as a stochastic money
supply rule. The theoretical model underpinning this expression implies that
the coeffi cient on inflation exceeds unity in general, takes a value of unity as
a special case at the Friedman (1969) optimum but that it may not fall below
unity. Simulation exercises support the theoretical restriction placed on this co-
effi cient, so long as the estimating equation accurately reflects the equilibrium
condition.
Our results can be interpreted in several ways. First, the derivation could be

said to represent an ‘equivalence proposition’between the money supply process
modelled and an ‘interest rate rule’, which actually represents an equilibrium
condition of the model. This would be similar to the interpretation adopted in
Alvarez et al. (2001), Végh (2002) and Schabert (2003), and
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Second, the Taylor condition can be interpreted as the interest rate rule
which results from the money supply process in the context of the Benk et al.
(2010) model. Woodford similarly derives the interest rate rule which "imple-
ments" strict inflation targeting in the New Keynesian model (Woodford, 2003,
pp.290-295). However, the money supply does not enter that model. Changes in
the velocity of money therefore play no role and thus cannot be used to help ex-
plain why traditional Taylor rule estimations might use misspecified estimating
equations in finding an inflation coeffi cient of less than one. The fact that our
framework assigns a central role to money potentially implies that the money
growth rule can offer guidance to policymakers at times when the conventional
monetary policy instrument encounters the zero lower bound, as is the case at
the present time.
Third the Taylor condition contrasts with the equilibrium condition for the

nominal interest rate derived from a standard Euler equation: Canzoneri et
al. (2007, p.1866), for example, derive an expression for the nominal interest
rate from a conventional Euler equation in which the coeffi cient on the term in
inflation is one.21 For post-1966 U.S. data, they show that the Euler-equation-
implied nominal interest rate fits poorly to the observed nominal interest rate.
On the other hand, a conventional Taylor rule with a coeffi cient on inflation
in excess of unity has often been found to fit the observed nominal interest
rate well (e.g. Taylor, 1993). For example, Clarida et al. (2000) find such
an estimate for ‘post-Volcker’ subsamples (but not pre-Volcker). The Taylor
condition (22) therefore represents an equilibrium condition which contains a
coeffi cient on inflation consistent with empirical results which find evidence of a
‘Taylor principle’, while suggesting that results which fail to find support for the
Taylor principle may omit potentially important variables such as the velocity
of money.
The Taylor condition derivation here also resonates with Hetzel (2000) who

warns that empirical correlations between a short-term interest rate and macro-
economic variables such as output and inflation cannot be interpreted to reveal
the behavior of policymakers (i.e. their policy rule) unless the relationship ob-
tained can be declared as structural. It is also consistent with Cochrane (2011),
who argues that the Taylor rule suffers from an identification problem in the
New Keynesian model. Our contribution has been to offer one very particu-
lar explanation based on a neoclassical monetary model extended to include
endogenous growth and endogenous velocity in order to shed light on the struc-
tural relationships which might underpin the reduced form expressions to which
Hetzel (2000) refers.

21Their expression is a log-normal approximation to a standard Euler equation and is written
in terms of the inverse of the gross nominal interest rate. Therefore, it also contains second
moments and the coeffi cient on inflation has a theoretical coeffi cient of minus one.
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8 Conclusion

The paper has derived a general equilibrium dynamic Taylor condition for a
constant relative risk aversion economy with leisure, Lucas (1988) endogenous
growth, and with endogenous velocity through production of exchange credit in
a financial intermediary. The importance of a fluctuating velocity in reproducing
the ‘Taylor principle’is consistent with the role for velocity reported by Reynard
(2004, 2006) and with Benk et al. (2010).
While providing a theoretical means to overview the empirical literature re-

lating to the Taylor rule, as reviewed by Siklos and Wohar (2005), here the
focus is first to show that estimation of a Taylor rule may result in a spurious
inference that the central bank is engaged in Taylor principle behavior, rather
than simply supplying money. This is established here by generating artificial
data as simulated from the model and then successfully estimating a theoreti-
cal Taylor condition. This condition is simply an equilibrium condition in the
economy in which the central bank stochastically makes changes in the money
supply growth rate to finance government spending. For example, such money
supply changes tend to occur whenever the government needs to depart from
its stationary money supply growth rate and resort to the ‘fiscal inflation tax’.
This typically can occur during banking crisis, recession, or war.
Money velocity growth itself enters as a variable and ends up playing a

potentially significant role; in particular this occurs when velocity is changing,
such as during the recent banking crisis and during the 1930s when US velocity
cycled downwards, as identified in Benk et al. (2010), and in the "pre-Volcker"
US high inflation of the 1970s. Velocity is endogenized in the model following
the banking financial intermediation microeconomic literature, where financial
services are produced according to a Cobb-Douglas production function that
includes deposited funds as an input. This approach implies a bank service
sector value-added that is consistent with the US national income accounting
treatment of the bank service sector.
The paper exhibits how the banking production of exchange credit is sur-

prisingly crucial to the derivation of a Taylor principle whereby the coeffi cient
on the inflation term is in fact greater than one. This results only through
an endogenous velocity of money; a simple CIA (cash-only) constraint with a
constant velocity of one is shown to provide an inflation coeffi cient of unity.
Through endogenous growth, we can derive an output gap measure not incon-
sistent with Taylor and Wieland’s (2010) emphasis on changes in output as a
measure for the output gap. In our model, the output growth term does not
enter directly unless we also include an investment growth term; otherwise the
consumption growth is the ‘output gap’term of the model’s Taylor condition.
Estimation results are also given for two misspecified models using the sim-

ulated data from the correct model. One includes output growth without in-
cluding investment growth. The second is a standard Taylor rule that exists
in the model economy only if there is no physical capital and if there cannot
exist exchange credit as a substitute to money (AF = 0). Omitted variables
cause significant misspecification bias in the reported results. The implication
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is that the results hold promise for explaining disparate estimated rules across
different periods and countries, as well as during bank crises, sudden financial
deregulation, or times of other significant shifts in money velocity. This could
help organize and show greater robustness for this literature.
By simulating data of the model and estimating successfully a ‘Taylor rule’

from the data, the paper implies that identification of such a rule econometrically
can be achieved as part of the economy’s asset pricing behavior when the central
bank simply prints money stochastically. In that case it would be spurious to
claim that such Taylor estimations show how the central bank actually conducts
policy through interest rate targeting rather than through simply satisfying
its fiscal needs via direct and indirect taxes, including the inflation tax. Put
differently, if this economy were representative of the actual economy, then
estimating a standard Taylor (1993) model using actual data would be expected
to produce an above-one Taylor-principle inflation coeffi cient only if velocity
(or exchange credit) and investment did not change over the sample period.
Reynard (2004, 2006) and Benk et al. (2010) for example put doubt on a
constancy of velocity while large business cycle fluctuations in investment are a
well-documented feature of business cycle research.
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