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ABBREVIATIONS 

CSB – Central Statistical Bureau 
DE – Germany  
d.f. – degrees of freedom 
DFT – discrete Fourier transform 
DG Ecfin – Directorate General for Economic and Financial Affairs  
(e.)d.f. – (effective) degrees of freedom 
EA – euro area 
EE – Estonia  
ES – Spain  
EU – European Union 
Eurocoin – Euro Area Business Cycle Coincidence Indicator  
FR – France  
GDP – gross domestic product 
IT – Italy  
Latcoin – Latvian Business Cycle Coincidence Indicator 
LT – Lithuania  
LV – Latvia  
MSFE – mean squared filter error  
NSA – seasonally unadjusted 
q-o-q – quarter-on-quarter 
RMDFA – regularised multivariate direct filter approach 
SA – seasonally adjusted 
US – United States 
w.r.t. – with respect to 
y-o-y – year-on-year 
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ABSTRACT  

The paper studies regularised direct filter approach as a tool for high-dimensional 
filtering and real-time signal extraction. It is shown that the regularised filter is able 
to process high-dimensional data sets by controlling for effective degrees of freedom 
and that it is computationally fast. The paper illustrates the features of the filter by 
tracking the medium-to-long-run component in GDP growth for the euro area, 
including replication of Eurocoin-type behavior as well as producing more timely 
indicators. A further robustness check is performed on a less homogeneous dataset 
for Latvia. The resulting real-time indicators are found to track economic activity in 
a timely and robust manner. The regularised direct filter approach can thus be 
considered a promising tool for both concurrent estimation and forecasting using 
high-dimensional datasets and a decent alternative to the dynamic factor 
methodology. 

Keywords: high-dimensional filtering, real-time estimation, coincident indicator, 
leading indicator, parameter shrinkage, business cycles, dynamic factor model 

JEL codes: C13, C32, E32, E37 
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INTRODUCTION 

Nowadays, gathering rich datasets is relatively easy. A more difficult exercise is 
effectively using them for a particular problem at hand. This paper adds to the 
literature on forecasting, regularisation, shrinkage, and high-dimensional estimation 
(see, ridge regression in, e.g. Tikhonov and Arsenin (1977) and Hoerl and Kennard 
(1970), lasso in Tibshirani (1996), least angle regression in Efron et al. (2004), 
Bayesian shrinkage in, e.g. Doan, Litterman and Sims (1984), factor models in Stock 
and Watson (2002) and Forni et al. (2000), (2005)) by exploring the properties of a 
regularised multivariate direct filter approach (RMDFA in short (Wildi (2012)) in 
signal extraction and forecasting using many variables. 

Wildi (2012) derives the regularised multivariate filter as a successor to an 
unregularised direct filter approach (Wildi (2011)) but does not study its properties 
either using generated or real-world data. Thus, this paper is the first paper known to 
the author that studies and implements the RMDFA to data. Furthermore, this paper 
studies how the RMDFA could be implemented to high-dimensional real-world 
datasets. This paper finds that filter regularisation helps in real-time signal 
extraction, since it controls for effective degrees of freedom, thus allowing to control 
for overfitting that can have degrading effects on out-of-sample performance. 
Another advantage of a regularised filter is that it allows for high-dimensional data 
to enter the filter and, therefore, further robustify the outcome. As it is shown in the 
paper, a particular regularisation feature used in the paper might remind about the 
"lag decay" term in Minnessota prior (e.g. Doan, Litterman and Sims (1984)) in 
Bayesian econometrics. Forcing more distant filter coefficients to zero both saves 
degrees of freedom and effectively shortens the filter, thus making it more 
responsive to the changing environment. Another regularisation feature studied in 
this paper is cross-sectional shrinkage that makes filter coefficients to behave 
similarly for similar series. The cross-sectional shrinkage has been found useful, 
particularly so if the dataset is rather homogeneous. 

As an application, the filter is applied to up to 72 variables in order to track the 
medium-to-long-run component of the euro area GDP growth. Both yearly and 
quarterly growth rates of GDP are considered. The results show that the filter output 
is robust and able to mimic as well as to produce more timely indicators than an 
established Eurocoin indicator (Altissimo et al. (2010)) that is based on the dynamic 
factor methodology (Forni et al. (2000), (2005)). Comparison of the RMDFA to the 
dynamic factor methodology of Forni et al. (2005) is especially important, since 
both methods have much in common and also feature some clear-cut differences. 
First, while the dynamic factor methodology shrinks the dimension of dataset to a 
few unobserved factors and, thus, has a few parameters to estimate, the RMDFA 
does not shrink the dimension of dataset but rather imposes restrictions on 
coefficient behavior. Therefore, the RMDFA can be involved in computing 
hundreds or even thousands of coefficients. Nonetheless, controlling for effective 
degrees of freedom helps avoid the overparameterisation problem and, thus, achieve 
good out-of-sample behavior. The paper illustrates this point by computing more 
than 800 filter coefficients for less than 150 observations long sample. Second, the 
dynamic factor methodology of Forni et al. (2005), as most other factor methods, 
including Stock and Watson (2002), extracts factors from the explanatory dataset 
independently of what is the target variable. If irrelevant variables dominate the 
dataset, the extracted generalised principal components would have little in common 
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with the target. Thus, careful pre-selection of explanatory variables is a prerequisite 
for a successful application of the factor methodology. By contrast, the RMDFA is 
more robust to such an error, since the filter would put smaller weights on irrelevant 
variables, and higher weights on more relevant ones. Therefore, the RMDFA 
requires potentially less work in the variable pre-selection step. 

As a robustness check, the filter is applied to a less homogeneous dataset for Latvia 
and is proved to stand the test. 

The paper is structured as follows. Section 1 introduces new regularisation features 
in the direct filter approach. Subsections 2.1 and 2.2 illustrate the new features of the 
filter by creating indicators for yearly and quarterly growth rates of the euro area 
GDP respectively. Section 3 performs a robustness check on a less homogeneous 
dataset for Latvia. Appendix lists the data and their transformations. 

 
1. REGULARISED MULTIVARIATE DIRECT FILTER APPROACH 

Regularised multivariate direct filter approach is a regularised version of the 
multivariate direct filter approach (Wildi (2011)), which has been found to be useful 
in creating real-time indicators (Bušs (2012)). 

However, the unregularised multivariate direct filter contains many parameters 
whose number increases with filter's dimension. Thus, the filter in Wildi (2011) 
cannot be too long or cannot contain tens of macroeconomic variables due to the 
limited sample size typically observed in macroeconomics, otherwise the filter 
would be overparameterised and the filter output would have poor out-of-sample 
quality. One way of increasing the cross-sectional dimension of the filter would be 
to decrease the length of the filter accordingly, and that indeed has been coded in the 
algorithm used in Bušs (2012). However, the length of the filter cannot be decreased 
infinitely, since it is bounded to zero, while too short a filter would result in 
deteriorating quality of its output. Therefore, similar to standard econometric 
practices in parameter shrinkage (ridge regression in, e.g. Tikhonov and Arsenin 
(1977) and Hoerl and Kennard (1970), lasso in Tibshirani (1996), least angle 
regression in Efron et al. (2004), Bayesian shrinkage in, e.g. Doan, Litterman and 
Sims (1984)), it would be reasonable to attempt to shrink the filter parameters as 
well in order to allow for controlling for effective degrees of freedom and using 
high-dimensional datasets. Such an attempt is made in Wildi (2012) that introduces 
three shrinkage parameters in a multivariate direct filter approach (Wildi (2011)) 
that control for cross-sectional shrinkage and shrinkage along time dimension and 
impose smoothness of filter coefficients. The three shrinkage dimensions can be 
imposed in any of their combinations or all of them can be set to zero so that the 
new filter replicates the one discussed in Wildi (2011). 

In order to introduce the new regularisation features, this paper builds on the 
classical filtration problem. Since details on technicalities can be found in Wildi 
(2011), (2012), this section just summarises the main elements of a customised filter 
necessary to introduce the new regularisation features later in the section. 

We denote ்ݕ as the output of a symmetric, possibly bi-infinite filter ∑ 	ஶ
௝ୀିஶ  ௝ܮ௝ߛ

applied to input series ்ݔ:  
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்ݕ ൌ ∑ 	ஶ
௝ୀିஶ   ்ݔ௝ܮ௝ߛ

   ൌ ∑ 	ஶ
௝ୀିஶ  ௝, (1)ି்ݔ௝ߛ

where ܮ is the lag or backshift operator. The real-time estimate of ்ݕ is 

ො்ݕ ൌ ∑ 	்ିଵ
௝ୀ଴ ௝ܾି்ݔ௝  (2). 

Generally complex transfer functions of filters in (1) and (2) are denoted by 
Γሺ߱ሻ ൌ ∑ 	ஶ

௝ୀିஶ ௝expሺെ݆݅߱ሻ and Γ෠ሺ߱ሻߛ ൌ ∑ 	்ିଵ
௝ୀ଴ ௝ܾexpሺെ݆݅߱ሻ respectively. 

For a stationary process ்ݔ, the mean squared filter error (MSFE) can be expressed 
as the mean squared difference between the ideal output and the real-time estimate: 

׬ 	
గ
ିగ
|Γሺ߱ሻ െ Γ෠ሺ߱ሻ|ଶ݀ܪሺ߱ሻ ൌ ்ݕሾሺܧ െ  ො்ሻଶሿ, (3)ݕ

where ܪሺ߱ሻ is the unknown spectral distribution of ்ݔ. A finite sample 
approximation of the MSFE, (3) is 

ଶగ

்
∑ 	ሾ்/ଶሿ
௞ୀିሾ்/ଶሿ ௞|Γሺ߱௞ሻݓ െ Γ෠ሺ߱௞ሻ|ଶܵሺ߱௞ሻ, (4) 

where ߱௞ ൌ  ሾܶ/2ሿ is the greatest integer smaller or equal to ܶ/2, and the ,ܶ/ߨ2݇
weight ݓ௞ is defined as  

௞ݓ ൌ ൜
1 for|݇| ് ܶ/2
1/2 otherwise,  (5) 

see Brockwell and Davis (1987), Ch. 10, for the reason for ݓ௞; although it is 
practically negligible, without it the inverse discrete Fourier transform does not 
replicate the data perfectly. ܵሺ߱௞ሻ in (4) can be interpreted as an estimate of the 
unknown spectral density of ்ݔ, which can be any spectral estimate, e.g. the one of 
white noise (Baxter and King (1999)), random walk (Christiano and Fitzgerald, 
(2003)), and its multivariate extension (Valle e Azevedo (2011)), an ARIMA-based 
spectral estimate as used in the TRAMO/SEATS seasonal adjustment procedure 
(Caporello, Maravall and Sánchez (2001)), or the specific ARIMA(0,2,2) process 
underlying the Hodrick-Prescott filter (Hodrick and Prescott (1997), King and 
Rebelo (1993), Maravall and Rio (2001)). However, as discussed in Wildi (2008), 
consistency of ܵሺ߱௞ሻ is not required because the goal is not to estimate ݀ܪሺ߱ሻ but 
the MSFE (see (3)). Therefore, this paper uses a "sufficient statistic" periodogram 
  :௫ሺ߱௞ሻ as ܵሺ߱௞ሻ in (4)்ܫ

ܵሺ߱௞ሻ:ൌ ௫ሺ߱௞ሻ்ܫ ൌ
ଵ

ଶగ்
|∑ 	்

௧ୀଵ  .௞ሻ|ଶ (6)߱ݐ௧expሺെ݅ݔ

Minimising expression (4) yields the real-time filter output optimally approximated 
to the ideal output in mean squared error sense. However, Wildi (2008) proposes a 
customised version of (4). 

1.1 Univariate direct filter approach 

Discrete version MSFE, (4), can be rewritten as follows: 

ଶగ

்
∑ 	ሾ்/ଶሿ
௞ୀିሾ்/ଶሿ ௞|Γሺ߱௞ሻݓ െ Γ෠ሺ߱௞ሻ|ଶ்ܫ௫ሺ߱௞ሻܹሺ߱௞ሻ (7), 
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which is identical to (4) for ܹሺ߱௞ሻ:ൌ 1. However, a more general version of 
ܹሺ߱௞ሻ:ൌ ܹሺ߱௞, ,ݓ݌ݔ݁  :ሻ can be writtenݐݑܿ

ܹሺ߱௞, ,ݓ݌ݔ݁ ሻݐݑܿ ൌ ൜
1 if|߱௞| ൏ ݐݑܿ
ሺ1 ൅ |߱௞| െ ሻ௘௫௣௪ݐݑܿ otherwise,  (8), 

which collapses to unity for ݁ݓ݌ݔ ൌ 0, in which case the classical mean squared 
optimisation, (4), is obtained. Parameter ܿݐݑ (for "cut-off frequency") marks the 
transition between passband and rightmost stopband, and positive values of ݁ݓ݌ݔ 
(for "exponent weight") emphasise high-frequency components in the rightmost 
stopband, thus making the filter output smoother than the one obtained by 
minimising (4) for positive ݁ݓ݌ݔ. 

Univariate analysis is of limited usefulness, thus we turn now to multiple-series 
analysis. 

1.2 Multivariate direct filter approach 

The above univariate customised filter has been generalised to a multivariate filter in 
Wildi (2011). Rewrite univariate minimisation problem, (7), with the discrete 
Fourier transform (DFT) Ξ்௫ሺ߱௞ሻ: 

ଶగ

்
∑ 	ሾ்/ଶሿ
௞ୀିሾ்/ଶሿ ௞|Γሺ߱௞ሻݓ െ Γ෠ሺ߱௞ሻ|ଶ்ܫ௫ሺ߱௞ሻܹሺ߱௞ሻ ൌ  

	ൌ
ଶగ

்
∑ 	ሾ்/ଶሿ
௞ୀିሾ்/ଶሿ ௞|Γሺ߱௞ሻΞ்௫ሺ߱௞ሻݓ െ Γ෠ሺ߱௞ሻΞ்௫ሺ߱௞ሻ|ଶܹሺ߱௞ሻ (9) 

where  

Ξ்௫ሺ߱௞ሻ ൌ ට
ଵ

ଶగ்
∑ 	்
௧ୀଵ  .௞ሻ (10)߱ݐ௧expሺെ݅ݔ

In addition to the filter output ݕ௧ and the corresponding input ݔ௧ we assume that 
there are ݉ additional explanatory variables ݖ௝௧, ݆ ൌ 1,… ,݉ that might help 
improve the real-time estimate of ݕ௧ obtained with a univariate filter. Then, the 
second expression in the modulus on the second line of (9), Γ෠௑ሺ߱௞ሻΞ்௫ሺ߱௞ሻ 
becomes:  

Γ෠௑ሺ߱௞ሻΞ்௫ሺ߱௞ሻ ൅ ∑ 	௠
௡ୀଵ Γ෠௭೙ሺ߱௞ሻΞ்௭೙ሺ߱௞ሻ (11) 

where 

Γ෠௑ሺ߱௞ሻ ൌ ൫∑ 	௅
௝ୀ଴ ܾ௫௝expሺെ݆݅߱௞ሻ൯Ξ்௫ሺ߱௞ሻ (12), 

Γ෠௭೙ሺ߱௞ሻ ൌ ൫∑ 	௅
௝ୀ଴ ܾ௭೙௝expሺെ݆݅߱௞ሻ൯Ξ்௭೙ሺ߱௞ሻ (13) 

are the one-sided transfer functions applied to the explanatory variables, and 
Ξ்௫ሺ߱௞ሻ, Ξ்௭೙ሺ߱௞ሻ are the corresponding DFTs. Then, the multivariate version of 
(9) can be written as follows:  

ଶగ

்
∑ 	ሾ்/ଶሿ
௞ୀିሾ்/ଶሿ ௞ݓ ቚቀΓሺ߱௞ሻ െ Γ෠௫ሺ߱௞ሻቁ Ξ்௫ሺ߱௞ሻ െ

െ	∑ 	௠
௡ୀଵ Γ෠௭೙ሺ߱௞ሻΞ்௭೙ሺ߱௞ሻቚ

ଶ
ܹሺ߱௞ሻ (14). 
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1.3 Rewriting filtration problem in a least squares form 

In order to conveniently define the regularised filter problem, the above multivariate 
filtration problem is rewritten in a least squares form (see Wildi (2012) for details). 
This subsection explains how it is done, whereas the next subsection introduces the 
regularisation problem. 

We define ܺ so that its ݇-th row ܺ௞ is: 

ܺ௞ᇲ ൌ ሺ1 ൅  ௞வ଴ሻܫ

Vec

ۉ

ۈۈ
ۇ

Ξ்௫ሺ߱௞ሻ expሺെ݅߱௞ሻΞ்௫ሺ߱௞ሻ ⋯ expሺെ݅߱ܮ௞ሻΞ்௫ሺ߱௞ሻ
Ξ்௭భሺ߱௞ሻ expሺെ݅߱௞ሻΞ்௭భሺ߱௞ሻ ⋯ expሺെ݅߱ܮ௞ሻΞ்௭భሺ߱௞ሻ
Ξ்௭మሺ߱௞ሻ expሺെ݅߱௞ሻΞ்௭మሺ߱௞ሻ ⋯ expሺെ݅߱ܮ௞ሻΞ்௭మሺ߱௞ሻ
⋮ ⋮ ⋮ ⋮
Ξ்௭೘ሺ߱௞ሻ expሺെ݅߱௞ሻΞ்௭೘ሺ߱௞ሻ ⋯ expሺെ݅߱ܮ௞ሻΞ்௭೘ሺ߱௞ሻی

ۋۋ
ۊ

 (15) 

where ܮ is the filter length, and ܫ௞வ଴ ൌ 0 for ݇ ൌ 0 and ܫ௞வ଴ ൌ 1 for ݇ ൌ
1,2, … , ሾܶ/2ሿ. Vectors ܾ and ܻ are defined as:  

ܾ ൌ Vec

ۉ

ۇ

ܾ௫଴ ܾ௭భ଴ ܾ௭మ଴ ⋯ ܾ௭೘଴
ܾ௫ଵ ܾ௭భଵ ܾ௭మଵ ⋯ ܾ௭೘ଵ
⋮ ⋮ ⋮ ⋮ ⋮
ܾ௫௅ ܾ௭భ௅ ܾ௭మ௅ ⋯ ܾ௭೘௅ی

ܻ ,ۊ ൌ

ۉ

ۈ
ۇ

Γሺ߱଴ሻΞ்௫ሺ߱଴ሻ
2Γሺ߱ଵሻΞ்௫ሺ߱ଵሻ
2Γሺ߱ଶሻΞ்௫ሺ߱ଶሻ
⋮
2Γሺ߱ሾ்/ଶሿሻΞ்௫ሺ߱ሾ்/ଶሿሻی

ۋ
ۊ

  (16). 

Neglecting the constant 2ߨ/ܶ and the practically negligible ݓ௞, (14) with ܹሺ߱௞ሻ ൌ 1 
can be rewritten as  

ሺܻ െ ܾܺሻ′ሺܻ െ ܾܺሻ → min
௕

 (17). 

Since ܺ and ܻ are complex-valued, the solution to (17) would be complex-valued as 
well. A real-valued ܾ can be obtained by rotating ܺ and ܻ so that the value of the 
metric in (17) is unaffected:  

ܺ௞,௥௢௧ ൌ ܺ௞expሺെ݅argሺΓሺ߱௞ሻΞ்௫ሺ߱௞ሻሻ ൅ ݄݅߱௞ሻ  

௥ܻ௢௧ ൌ |ܻ|, (18) 

where ܺ௞,௥௢௧ is the ݇-th row of ܺ௥௢௧, and ݄ is the lag at which filter is estimated, i.e. 
݄ ൌ 0 for a concurrent filter that targets ି்ݕ௛ ൌ ݄ ,்ݕ ൐ 0 for a smoother, and 
݄ ൏ 0 for forecasting the signal. A real-valued ܾ thus can be obtained from solving  
 

ሺ ௥ܻ௢௧ െ ܺ௥௢௧ܾሻ′ሺ ௥ܻ௢௧ െ ܺ௥௢௧ܾሻ → min
௕

 (19). 

For the customised multivariate filter (ܹሺ߱௞ሻ ് 1), we define  

ܺ௞,௥௢௧
௖௨௦௧ ൌ ܺ௞,௥௢௧ඥܹሺ߱௞, ,ݓ݌ݔ݁  ,ሻ (20)ݐݑܿ

௥ܻ௢௧
௖௨௦௧ ൌ

ۉ

ۈ
ۇ
|Γሺ߱଴ሻΞ்௫ሺ߱଴ሻ|ඥܹሺ߱଴, ,ݓ݌ݔ݁ ሻݐݑܿ

2|Γሺ߱ଵሻΞ்௫ሺ߱ଵሻ|ඥܹሺ߱ଵ, ,ݓ݌ݔ݁ ሻݐݑܿ
⋮
2|Γሺ߱ሾ்/ଶሿሻΞ்௫ሺ߱ሾ்/ଶሿሻ|ඥܹሺ߱ሾ்/ଶሿ, ,ݓ݌ݔ݁ یሻݐݑܿ

ۋ
ۊ

 (21) 
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where ܺ௞,௥௢௧
௖௨௦௧  is the ݇-th row of ܺ௥௢௧

௖௨௦௧. Then, the least squares form for the 
customised filter problem can be written as:  

ሺ ௥ܻ௢௧
௖௨௦௧ െ ܺ௥௢௧

௖௨௦௧ܾሻ′ሺ ௥ܻ௢௧
௖௨௦௧ െ ܺ௥௢௧

௖௨௦௧ܾሻ → min
௕

 (22), 

which collapses to (19) for ݁ݓ݌ݔ ൌ 0. 

Further on, the regularised filter problem is introduced. 

1.4 Regularisation 

Recalling that Tikhonov regularisation problem (see, e.g. Tikhonov and Arsenin 
(1977)) can be cast in the form ሺܻ െ ܾܺሻ′ሺܻ െ ܾܺሻ ൅ ܾ′ܾߣ → min௕, the regularised 
direct filter approach problem introduced in Wildi (2012) is of the familiar form:  

ሺ ௥ܻ௢௧
௖௨௦௧ െ ܺ௥௢௧

௖௨௦௧ܾሻ′ሺ ௥ܻ௢௧
௖௨௦௧ െ ܺ௥௢௧

௖௨௦௧ܾሻ ൅ ௦ܾ′ܳ௦ܾߣ ൅ ௖ܾ′ܳ௖ܾߣ ൅ ௗܾ′ܳௗܾߣ → min
௕

 (23) 

where the three additional expressions of bilinear form represent three different 
regularisation directions: coefficient smoothness (subscript s), cross-sectional 
shrinkage (subsript c), and shrinkage along time dimension (subscript d). Each of 
them will be discussed in turn. 

The idea behind the smoothness restriction is that filter coefficients should not 
change too erratically as functions of a lag. The ܳ௦ matrix of size ሺܮ ൅ 1ሻ ൈ ሺܮ ൅ 1ሻ 
is such that  

ܾ′ܳ௦ܾ ൌ ∑ 	௠
௨ୀ଴ ∑ 	௅

௟ୀଶ ሺሺ1 െ ሻଶܾ௟ܮ
௨ሻଶ (24) 

where ሺ1 െ ሻଶܾ௟ܮ
௨ ൌ ܾ௟

௨ െ 2ܾ௟ିଵ
௨ ൅ ܾ௟ିଶ

௨  is the second order difference of ܾ௟
௨, 

݈ ൌ 0, … , ݑ and ,ܮ ൌ 0,… ,݉. Therefore, the term in (24) is a measure for the 
quadratic curvature of filter coefficients: if the coefficients decay linearly as 
functions of a lag, this term vanishes. Thus, in the limiting case when ߣ௦ → ∞, the 
filter coefficients are restricted to be linear functions of a lag. 

The idea behind the cross-sectional shrinkage is that one would expect the filter 
coefficients to be similar for similar series. This shrinkage is implemented by 
imposing constraints on ܾ according to 

∑ 	௠
௨ୀ଴ ൬ቀܾ଴

௨ െ
ଵ

௠ାଵ
∑ 	௠
௨ᇱୀ଴ ܾ଴

௨ᇱቁ
ଶ
൅ ቀܾଵ

௨ െ
ଵ

௠ାଵ
∑ 	௠
௨ᇱୀ଴ ܾଵ

௨ᇱቁ
ଶ
൅ ⋯൅ ቀܾ௅

௨ െ

െ
ଵ

௠ାଵ
∑ 	௠
௨ᇱୀ଴ ܾ௅

௨ᇱቁ
ଶ
ቁ (25), 

which yields a symmetric bilinear form with 

ܳ௖ ൌ ൮

௖,ଵݍ
௖,ଶݍ
⋮
௖,ሺ௠ାଵሻ∗ሺ௅ାଵሻݍ

൲ (26) 

where  

௖,ଵݍ ൌ ሺ1 െ
ଵ

௠ାଵ
, 0, … ,0| െ

ଵ

௠ାଵ
, 0, … ,0| െ

ଵ

௠ାଵ
, 0, … ,0|… ሻ  
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௖,ଶݍ ൌ ሺ0,1 െ
ଵ

௠ାଵ
, 0, … ,0|0, െ

ଵ

௠ାଵ
, 0, … ,0|0 െ

ଵ

௠ାଵ
, 0, … ,0|… ሻ  

௖,ଷݍ ൌ ሺ0,0,1 െ
ଵ

௠ାଵ
, 0, … ,0|0,0, െ

ଵ

௠ାଵ
, 0, … ,0|0,0, െ

ଵ

௠ାଵ
, 0, … ,0|… ሻ  

௖,ሺ௠ାଵሻ∗ሺ௅ାଵሻݍ … ൌ ሺ0,0, … ,െ
ଵ

௠ାଵ
|0,0, … ,െ

ଵ

௠ାଵ
|0,0, … ,െ

ଵ

௠ାଵ
|…  

|0,0, … ,1 െ
ଵ

௠ାଵ
ሻ (27), 

so that each block separated by | is of length ܮ ൅ 1. Thus, there are 1's on the 

diagonal of ܳ௖ and periodically arranged െ
ଵ

௠ାଵ
's, which account for the central 

means in (25). 

A higher ߣ௖ gives preference for more similar filters across series, and the limiting 
case ߣ௖ → ∞ ensures that the filter coefficients are identical across series. 

Finally, the idea behind the shrinkage across time dimension is that a practitioner 
might give preference for the filter coefficients that decay to zero progressively as 
functions of a lag. For a Bayesian econometrician, this would remind of the lag 
decay in the Minnesota prior (see, e.g. Doan, Litterman and Sims (1984)). This 
shrinkage is implemented by setting ܳௗ so that  

ܾ′ܳௗܾ ൌ ∑ 	௠
௨ୀ଴ ∑ 	௅

௟ୀ଴ ෤௟ሺܾ௟ݍ
௨ሻଶ 

(28) 

where ݍ෤௟ is the ݈-th element of  

෤ݍ ൌ ൫ݍ଴∨௛, ,|ଵି଴∨௛|ݍ ,|ଶି଴∨௛|ݍ … ,  ௅ି଴∨௛|൯ (29)|ݍ

where ݍ is set to ݍ:ൌ 1 ൅  maxሺ⋅ሻ function, and ݄ signifies the lag	ௗ, ∨ denotes theߣ
at which filter is estimated, i.e. ݄ ൌ 0 means a concurrent filter that targets 	
௛ି்ݕ ൌ ݄ ,்ݕ ൐ 0 means that the filter is the smoother, and ݄ ൏ 0 means that the 
filter is targeted to forecast the signal ݄ periods ahead. When estimating ି்ݕ௛ for 
݄ ൐ 0, a practitioner would want to assign the largest filter weight to observations 
coinciding with ି்ݕ௛. Thus, (29) ensures that minimum regularisation is imposed on 
lag ݄ (since ݍ௛ି଴∨௛ ൌ  and a decay is emphasised symmetrically on both sides ,(ݍ
away from the target lag ݄. A higher ߣௗ ensures a faster coefficient decay to zero as 
a function of the lag. 

Since the regularisation is cast in bilinear forms, the problem in (23) has an analytic 
solution. Setting ߣ௦ ൌ ௖ߣ ൌ ௗߣ ൌ 0 gives the unregularised filter problem in (22). 
Or, setting ݁ݓ݌ݔ ൌ 0 but letting some of the regularisation lambdas positive gives 
the regularised classical multivariate filter problem. It has been found in this paper 
that the lag decay shrinkage is the most useful of the three regularisation types for 
the application at hand, followed by the cross-sectional shrinkage. 

The next section describes an application of the filter obtained by solving (23) 
subject to two potential constraints: first and/or second order constraints, which are 
explained in the following subsection. 



10 

FORECASTING AND SIGNAL EXTRACTION WITH REGULARISED MULTIVARIATE DIRECT FILTER APPROACH 
 

 

1.5 Level and time shift constraints 

The first order constraint imposes specific values on amplitude functions in 
frequency zero. For a bandpass, one would typically set amplitudes at frequency 
zero to be zero, ensuring that a bandpass puts zero weight on trend frequency, while 
for a univariate lowpass one would typically set amplitude at frequency zero to 
unity, to ensure that a lowpass tracks the level/scale of the target; such a restriction 
is related to assuming that the target has a unit root at frequency zero, i.e. it is a first 
order integrated process. 

For a multivariate filter, the optimal constrained level of the amplitude at frequency 
zero is less clearly cut. This level can be set to an inverse of the number of 
explanatory variables for all of the variables, if all explanatory variables follow 
about the same trend. However, the latter might not always be the case, and, thus, a 
better outcome could be obtained by differentiating the amplitude constraint at 
frequency zero for various explanatory variables. An example of such a 
differentiation of the constraint is provided in the empirical section. 

In practice, one can choose between using or not using the level constraint at ones 
own discretion. This constraint is implemented by the following restriction: 

ܾି௛
௨ ൅ ܾିሺ௛ିଵሻ

௨ ൅ ⋯൅ ܾ௅ି௛
௨ ൌ  ௨ (30)ݓ

where ݓ௨ is the value at which the transfer function for variable ݑ is set at 
frequency zero, and ݄ is the targeted lag (݄ ൌ 0 for a concurrent filter, ݄ ൐ 0 for a 
smoother, and ݄ ൏ 0 for forecasting the signal). 

The second order constraint restricts the time shift of the filter at zero frequency to 
vanish, and is related to assuming that the target variable has two unit-roots in 
frequency zero, in which case the first and the second order constraints would be 
both implemented. In practice, however, the usage of the constraints are up to the 
practitioner's agenda, and one could use the time shift constraint without imposing 
the level constraint, the combination of the constraints that can not be 
straightforwardly imposed in the time domain. The second order constraint is 
imposed by forcing the derivative of the transfer function at frequency zero to 
vanish, which results in the following coefficient constraint:  

െ݄ܾି௛
௨ ൅ ሺ1 െ ݄ሻܾଵି௛

௨ ൅ ሺ2 െ ݄ሻܾଶି௛
௨ ൅ ⋯൅ ܾଵ

௨ ൅ 2ܾଶ
௨ ൅ ⋯ 

൅ሺܮ െ ݄ሻܾ௅ି௛
௨ ൌ 0  (31) 

where ݄ is the targeted lag (݄ ൌ 0 for a concurrent filter, ݄ ൐ 0 for a smoother, and 
݄ ൏ 0 for forecasting the signal). 

Both constraints can be implemented by selecting any two of the coefficients but is 
implemented by constraining ܾ଴

௨ and ܾଵ
௨, so as to avoid a conflicting situation 

between these constraints and the regularisation, e.g. a lag decay agenda for ݄ large 
enough. 

The constrained regularised filter problem is solved by rewriting filter coefficient 
vector ܾ as follows: 

ܾ ൌ ܴ ௙ܾ ൅ ܿ, (32) 
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where ௙ܾ is the vector of freely determined filter coefficients, plugging (32) in (23), 
solving for ௙ܾ, and then plugging the estimate of ௙ܾ in (32) to get the estimate of ܾ 
(see Wildi (2012) for details). 

1.6 Effective degrees of freedom 

In an unconstrained ordinary least squares framework, the (regression) degrees of 
freedom are the number of estimated parameters. Given a well-posed ordinary least 
squares problem	ሺܻ െ ܾܺሻ′ሺܻ െ ܾܺሻ → min

௕
, the fitted values of ܻ can be written in 

terms of a hat or smoother matrix S, which is just a projection matrix P: 

෠ܻ ൌ ܻܵ ൌ ܺሺܺ′ܺሻିଵܺ′ܻ ൌ ܻܲ (33). 

The degrees of freedom are the trace of projection matrix:  

݀. ݂. ൌ  ,ሺܲሻ (34)ݎݐ

which equals to rankሺܺሻ. 

For a regularised problem as in expression (23), ሺ ௥ܻ௢௧
௖௨௦௧ െ ܺ௥௢௧

௖௨௦௧ܾሻ′ሺ ௥ܻ௢௧
௖௨௦௧ െ

ܺ௥௢௧
௖௨௦௧ܾሻ ൅ ௦ܾ′ܳ௦ܾߣ ൅ ௖ܾ′ܳ௖ܾߣ ൅ ௗܾ′ܳௗܾߣ → min

௕
 the smoother matrix is no longer 

an orthogonal projection but the same notion applies. Denoting the fitted value of 

௥ܻ௢௧
௖௨௦௧ by ෠ܻ௥௢௧

௖௨௦௧ and the corresponding smoother matrix by ܵ,෩  we obtain:  

ሚܵ ൌ ܴ݁ሺܺ௥௢௧
௖௨௦௧ሻሺሺܺ௥௢௧

௖௨௦௧ሻ′ܺ௥௢௧
௖௨௦௧ ൅ ௦ܳ௦ߣ ൅ ௖ܳ௖ߣ ൅ ௗܳௗሻିଵܴ݁ሺܺ௥௢௧ߣ

௖௨௦௧ሻ′ (35), 

so that ෠ܻ௥௢௧
௖௨௦௧ ൌ ሚܵ

௥ܻ௢௧
௖௨௦௧, and the effective degrees of freedom (or, effective number of 

parameters) are the trace of ሚܵ: 

݁. ݀. ݂. ൌ ሺݎݐ ሚܵሻ (36) 

(see, e.g. Moody (1992), Hodges and Sargent (2001)). 

Effective degrees of freedom are useful in controlling for an overfitting and, 
consequently, in controlling for an out-of-sample performance. 

 

2. TRACKING ECONOMIC ACTIVITY IN THE EURO AREA 

2.1 Tracking trendcycle in yearly growth of GDP 

This section discusses the new regularisation features of the multivariate filter by 
creating two real-time indicator designs for the euro area GDP. The two indicator 
designs differ by the input data transformation and according modifications in their 
filter designs. The first design discussed in this subsection considers yearly growth 
rates of real GDP, while the second one discussed in the next subsection considers 
quarterly growth rates of real GDP. Potential users of those indicators then can form 
a subjective preference between the two. More discussion follows in the respective 
subsections focusing on each design separately, starting with the yearly growth 
design. 
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2.1.1 Target 

The filter is set to target an ideal lowpass of yearly growth of real GDP with cut-off 
wave length 12 months. The quarterly GDP data are taken from the first quarter of 
1995 onwards as published by the Eurostat. The data are linearly interpolated to 
monthly frequency, logged, yearly differenced and demeaned before their spectral 
content enters the filter. 

2.1.2 Explanatory variables 

Monthly business and consumer confidence indicators published by DG Ecfin and 
other monthly variables are used as explanatory variables. In total, 72 monthly 
variables are used. The choice of the indicators is based on economic relevance and 
data availability. Appendix contains a complete list of input data and their 
transformations. DG Ecfin data are usually published at the end of the reference 
month, except December, for which data are published in early January. DG Ecfin 
business and consumer survey data are almost unrevised: this applies both to 
seasonally unadjusted and seasonally adjusted data, as the latter is the product of the 
seasonal adjustment program Dainties, which does not revise historic data as new 
ones come in1. The above-mentioned considerations make DG Ecfin data convenient 
for real-time filtration. Some other explanatory data happen to be revised but the 
effect of their revision on the filter output is considered to be of minor extent and, 
therefore, the final revision data are used. 

All explanatory variables are taken from January 1995 onwards, standardised to zero 
mean and unit variance. Integrated data are made non-integrated by suitable 
transformations. Appendix lists the data and their transformations. 

2.1.3 Regularisation features 

We now examine the regularisation features of the filter. For visual tractability and 
due to numerical issues (an unregularised filter crashes for a high-dimensional input 
data when the number of estimated filter parameters reaches that of sample 
observations), only nine survey variables are used to analyse the filter effect. More 
data are added further on in the section. The nine variables are business and 
consumer confidence data: production trend observed in recent months (industry), 
assessment of order-book levels (industry), assessment of stocks of finished products 
(industry), production expectations for the months ahead (industry), employment 
expectations for the months ahead (industry), confidence indicator in construction, 
confidence indicator in retail, consumer confidence indicator, and confidence 
indicator in services. 

In order to motivate the chosen transformation of data, it is illustrative to plot the 
transformed target variable and explanatory variables. Figure 1a shows standardised 
yearly growth of EA GDP versus standardised business and consumer data. 
Explanatory data are well aligned with the yearly growth of GDP. Extracting the 
cross-sectional mean and the first principal component of the standardised 
explanatory data, and plotting against standardised yearly growth of GDP shows that 
                                                             
1 For details, see The joint harmonized EU programme of business and consumer surveys, User Guide, 

2007, European Commission Directorate-General for Economic and Financial Affairs, available at 
http://ec.europa.eu/economy_finance/db_indicators/surveys/documents/userguide_en.pdf  
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the mean and the first principal component both explain yearly changes in GDP 
well, and there is not much difference in the performance of mean versus principal 
component (see Figure 1b). 

Figure 1  
GDP versus business and consumer data 

 

Notes: (a) Yearly growth of GDP versus business and consumer data; (b) yearly growth of GDP 
versus cross-sectional mean and first principal component of business and consumer data; all 
variables normalised to zero mean and unit variance. 
 
Obviously, there is not much to improve on the simple cross-sectional mean or the 
first principal component of explanatory variables as it comes to tracking cyclical 
developments in normalised yearly growth of EA GDP; it is slightly more difficult 
to track non-normalised target (see the results below). The cross-sectional mean or 
principal components could be used as filter inputs, yet this paper shows that it is not 
necessary, and that one can use the original, possibly high-dimensional data as the 
input and potentially benefit from the richness of data. 

In order to understand the extent of overparameterisation in an unregularised 
multivariate filter, consider an unconstrained filter applied to the considered nine 
variables targeting an ideal lowpass of yearly growth of EA GDP with the cut-off 
wave length 12 months. For simplicity, the filter length is set to be fixed (12 
observations). While the estimation routine can estimate a 9-variable filter for full 
sample (178 observations long), it crashes for smaller subsamples because of the 
degrees of freedom having been shrunk to zero for all subsamples shorter than 
9 * 12 = 108 observations. A further reduction of filter length might be a temporary 
solution but not for long and not without consequences for output quality. Therefore, 
an unconstrained 9-variable filter output is infeasible for the considered data 
samples. Consequently, some sort of parameter shrinkage is necessary. In order to 
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illustrate the effect of parameter shrinkage induced by the regularised filter, consider 
the estimated filter coefficients for an unconstrained and unregularised 9-variable 
filter ofr full sample. The number of estimated parameters is 9 variables times 12 
observations long filter, which gives 108 parameters to estimate of a 178 
observations long sample, which gives only 70 residual degrees of freedom. Figure 
2a shows that the estimated filter coefficients look erratic and unsmooth, and do not 
show either similar behaviour of variables or an evident decay towards zero with an 
increasing lag. Figure 2b shows the (rather chaotic) filter amplitudes corresponding 
to the coefficients in Figure 2a; it will be useful to analyse how the amplitudes 
change under various constraints and regularisation restrictions. 

Figure 2 
Filter coefficients and amplitudes without regularisation 

 
Notes: (a) 9-variable filter coefficients without regularisation and filter constraints; (b) filter 
amplitudes corresponding to coefficients in Figure 2a.  
If not otherwise specified, the same lables are used in Figures 3–10 hereinafter. 
 
We will now witness the effect of filter constraints and regularisation features, first 
applied each one at a time, and then in a potentially useful combination. 

The first order restriction imposes filter amplitude to be a specific value at frequency 
zero. For a univariate lowpass, a natural value of the amplitude at frequency zero is 
unity to ensure that the scale of the output is comparable to the scale of the target 
signal. For a multivariate filter, things are not similarly straightforward, since all the 
input series generally do not possess the same trend; therefore, restricting all 
amplitudes to be of the same value at frequency zero might be suboptimal. If all the 
input series followed a common trend, it would be natural for a multivariate lowpass 
to set amplitudes at frequency zero to be inverse of the number of input series, so 
that summing over the amplitudes would result in unity at frequency zero. Since the 
input series used in this exercise have a somewhat similar behaviour between each 
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other, the latter approach is used in this exercise; however, there might be potential 
gains by using a more sophisticated amplitude constraint that would differentiate 
amplitude values at frequency zero for different input series; one such approach is 
discussed in the section below when applying the filter to a higher-dimensional set 
of explanatory variables. 

The first order constraint saves one d.f. per input series, thus nine d.f. are saved for 
an unregularised nine-variable filter. 

Figures 3a and 3b show that the effect of amplitude constraint is slightly more 
dispersed coefficients (the scale of the graph has changed) as well as slightly more 
exploded amplitudes. Thus, the first order constraint per se does not seem to be of 
much help for an otherwise ill-posed high-dimensional filter. Note that the 
amplitude constraint is binding for almost all series, since the unconstrained 
amplitudes at frequency zero are dispersed far from the constrained value (1/9). 

Figure 3 
First order constrained lowpass filter 

 

Notes: (a) Coefficients for a 1st-order constrained lowpass filter; (b) filter amplitudes 
corresponding to coefficients in Figure 3a. 
 
The second order restriction imposes a vanishing phase shift at frequency zero for a 
targeted lead or lag, and also saves a d.f. per input variable in an unregularised 
problem. This constraint is related to assuming that the target variable follows the 
second order integrated process, in which case there are two unit roots at frequency 
zero, and, therefore, both first and second order constraints would be implemented. 
However, the time-shift constraint can be used without the first order constraint to 
ensure that the output is coincident with the target signal but not necessarily 
assuming that the target signal follows a second order integrated process. Therefore, 
such a combination of constraints goes beyond the one typically seen in the time-
domain applications. 

The corresponding filter coefficient and amplitude Figures 4a and 4b show that the 
coefficients are back to their original scale, and amplitudes also look less exploded 
compared to the ones of the first order constrained filter. (Evidently, higher 
amplitudes at the high-frequency content indicate that zero time shift at frequency 
zero is obtained by putting higher weight on high-frequency content, which is 
typically the case when explanatory variables are lagging with respect to the target 
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variable, which is in line with the observation from Figures 1a and 1b.) Still, the 
second order constrain is not a panacea, since the amplitudes are still erratic and the 
number of degrees of freedom vanishes for samples smaller than 9 * (12 – 1) = 99 
months, which is 8 years of data. 

Figure 4 
Second order constrained concurrent filter  

 
Notes: (a) Coefficients for a second order constrained concurrent filter; (b) filter amplitudes 
corresponding to coefficients in Figure 4a. 
 

Turning to the new regularisation features, Figures 5a to 5f show the effect of 
coefficient smoothness restriction of various extent corresponding to ߣ௦ being 0.01, 
0.1 and 1, which correspond to the effective degrees of freedom 66, 43 and 30 
respectively. 

Figures 5a to 5f show that the filter coefficients are no longer erratic; they are nice 
and smooth, and they are getting more linear as the smoothness parameter ߣ௦ 
increases. If the smoothness parameter is increased still further, the filter coefficients 
converge to horizontal straight lines. However, such an over-regularisation is neither 
necessary nor welcome, since the considered small values of the smoothness tuning 
coefficient already reduce a lot of degrees of freedom, and the corresponding 
amplitudes look much closer to those that would be expected, i.e. most of their 
weights concentrate in the passband ሾ0,  .6ሿ and converge to zero in the stopband/ߨ
Nonetheless, the filter coefficients show neither convergence to zero with higher 
lags nor similarity across the series. 

Figures 6a to 6f show the (partial) effect of cross-sectional restriction of various 
extent corresponding to ߣ௖ being 0.01, 0.1 and 1 (the rest of shrinkage parameters 
being zero), which correspond to the effective degrees of freedom 85, 48 and 24 
respectively, i.e. close to what we have observed with the parameter smoothness 
restriction. 

The effects of cross-sectional restriction differ from those of parameter smoothness 
restriction: a mild cross-sectional restriction seemingly improves the behaviour of 
filter coefficients and amplitudes (see Figures 6a and 6b), while a further cross-
sectional restriction can be harmful if applied alone (see amplitude behaviour in 
Figure 6f). Such cross-sectional restriction analysis might help understand which 
series or clusters of series are different from the others. In our exercise, no series 
clearly stands out from the rest. 
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Figure 5 
Effect of coefficient smoothness restriction 

 

Notes: (a) Coefficients for an unconstrained filter if ߣ௦ ൌ 0.01; (b) filter amplitudes 
corresponding to coefficients in Figure 5a; (c) coefficients for an unconstrained filter if ߣ௦ ൌ 0.1; 
(d) filter amplitudes corresponding to coefficients in Figure 5c; (e) coefficients for an 
unconstrained filter if ߣ௦ ൌ 1; (f) filter amplitudes corresponding to coefficients in Figure 5e.  
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Figure 6 
Effect of cross-sectional restriction 

 

Notes: (a) Coefficients for an unconstrained filter if ߣ௖ ൌ 0.01; (b) filter amplitudes corresponding 
to coefficients in Figure 6a; (c) coefficients for an unconstrained filter if ߣ௖ ൌ 0.1; (d) filter 
amplitudes corresponding to coefficients in Figure 6c; (e) coefficients for an unconstrained filter 
if ߣ௖ ൌ 1; (f) filter amplitudes corresponding to coefficients in Figure 6e. 
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Figure 7 
Effects of longitudinal shrinkage 

 
Notes: (a) Coefficients for an unconstrained filter if ߣௗ ൌ 0.01; (b) filter amplitudes 
corresponding to coefficients in Figure 7a; (c) coefficients for an unconstrained filter if ߣௗ ൌ 0.1; 
(d) filter amplitudes corresponding to coefficients in Figure 7c; (e) coefficients for an 
unconstrained filter if ߣௗ ൌ 1; (f) filter amplitudes corresponding to coefficients in Figure 7e. 
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As for the third regularisation feature, Figures 7a to 7f show the effect of 
longitudinal shrinkage, i.e. a lag decay restriction of various extent corresponding to 
 ,ௗ being 0.01, 0.1 and 1, which correspond to the effective degrees of freedom 82ߣ
30 and 5 respectively and reflect a stronger shrinkage than we have observed with 
parameter smoothness or cross-sectional restriction. 

Figures 7a to 7f show that a lag decay restriction forces filter coefficients to shrink 
towards zero as functions of lag, and that a sufficiently high shrinkage parameter 
yields filter coefficients to be non-zero for a small number of lags. Figure 7 shows 
that a sufficiently high longitudinal shrinkage forces filter amplitudes to shrink 
towards zero (see the scale of Figure 7f) and flatten, resembling those of an allpass 
filter, which is an expected behaviour, since a short filter cannot discriminate 
between frequencies effectively. 

The coefficients in Figure 7c are rather smooth resembling the effect of parameter 
smoothness restriction. Also, Figure 7 shows that the longitudinal restriction forces 
filter coefficients to behave somewhat similarly across series, which reminds of the 
cross-sectional shrinkage. These effects might suggest that the lag decay shrinkage 
is the most useful of all three shrinkages. Still, the longitudinal shrinkage might 
conflict, for example, with the parameter smoothness restriction for a sufficiently 
high lag decay restriction (see Figure 7e). But, instead of using both longitudinal and 
parameter smoothness regularisation features, one might just loosen the lag decay 
restriction. 

The findings in this paper indeed suggest that the longitudinal shrinkage might 
be the most useful of the three regularisation features. Moreover, this paper 
will use only the longitudinal and the cross-sectional shrinkages from the 
considered regularisation "troika", since the parameter smoothness restriction 
can be obtained implicitly by the former two. 

Figure 8 
Longitudinal regularisation with first order constraint 

 

Notes: (a) Coefficients if longitudinal regularisation with ߣௗ ൌ 0.1 and the first order constraint 
are implemented; (b) filter amplitudes corresponding to coefficients in Figure 8a. 
 
Recall that setting the longitudinal shrinkage to ߣௗ ൌ 1 yields only five e.d.f., which 
might suggest that a slight change in the sample size or in the number of explanatory 



21 

FORECASTING AND SIGNAL EXTRACTION WITH REGULARISED MULTIVARIATE DIRECT FILTER APPROACH 
 

 

series could yield close to zero e.d.f. Indeed, the estimation routine can break up if 
severe regularisation is imposed. Therefore, empirical work should be conducted 
with caution so that a sufficient number of effective degrees of freedom are given to 
the estimation routine. Otherwise, the estimation routine will not work not because 
of overparameterisation but because of "underparameterisation". 

Filter constraints have been found to be useful in real-time signal extraction (Bušs 
(2012)). Therefore, we consider the effect of longitudinal shrinkage combined with 
either first or second order constraint, or both. 

Figure 9 
Longitudinal regularisation with second order constraint 

 

Notes: (a) Coefficients if longitudinal regularisation with ߣௗ ൌ 0.1 and the second order 
constraint are implemented; (b) filter amplitudes corresponding to coefficients in Figure 9a. 
 

Figure 10 
Longitudinal regularisation with both first and second order constraints 

 

Notes: (a) Coefficients if longitudinal regularisation with ߣௗ ൌ 0.1 and both the first and the 
second order constraints are implemented; (b) filter amplitudes corresponding to coefficients in 
Figure 10a. 
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Implementation of the first order constraint together with the longitudinal shrinkage 
yields similarly behaving coefficients and amplitudes whose values at frequency 
zero are an inverse of the number of input variables, i.e. 1/9. The amplitude values 
tend to diverge sharply and mostly increase for passband frequencies, afterwards 
tending to converge and decrease. Instability of the amplitudes at low frequencies 
might be explained by the restrictive nature of the first order constraint: it forces all 
amplitudes to be of the same small value, although the unrestricted amplitudes are 
somewhat dispersed around frequency zero. Also, some of the coefficients are 
negative at low lags, which can be considered as an unwelcome effect for the dataset 
where each series correlates positively with the target. 

The second order constraint slightly increases the dispersion of coefficients but 
otherwise does not add drastic changes to the regularised filter. 

Implementing both constraints simultaneously is the most restrictive case. Figures 
10a and 10b show that the filter coefficients behave more similarly across the series 
than in the case of no constraint or just the first order constraint (notice the scale of 
graphs), and so the corresponding amplitudes are less dispersed than in the case of 
no constraint or just the first order constraint. Still, the negative coefficient values 
implied by the first order constraint might be considered as somewhat implausible or 
unwanted, while the cause of their implausibility as restrictive and somewhat 
arbitrary amplitude constraint. Therefore, if the first order constraint is to be used, 
one should think of plausible values for amplitudes at frequency zero. Otherwise, 
instead of using the amplitude constraint, the practitioner might be willing to use the 
cross-sectional shrinkage as a tool to help controlling for degrees of freedom (at 
least for rather homogeneous datasets). 

2.1.4 Indicator design 

The chosen real-time filter design for the yearly growth rate of the EA GDP is 
thus a regularised, second order constrained lowpass filter with possibly 
positive longitudinal and cross-sectional shrinkages (ࢊࣅ ൒ ૙, ࢉࣅ ൒ ૙) and no 
parameter smoothness restriction (࢙ࣅ ൌ ૙). 

Applying the filter to all 72 variables requires more stringent shrinkage. This is done 
by increasing the longitudinal shrinkage parameter to ߣௗ ൌ 0.2 and the cross-
sectional shrinkage parameter to ߣ௖ ൌ 5. The rationale for the chosen shrinkage 
parameters is as follows. The previous subsection shows that the longitudinal 
shrinkage is more aggressive than the cross-sectional one. Thus, the longitudinal 
shrinkage parameter cannot be set too high, since the filter will be effectively too 
short (filter coefficients will be zero for larger lags). Therefore, in order not to 
reduce the filter length to an inappropriate value (since a too short filter cannot 
discriminate between frequencies effectively), the rest of d.f. reduction can be 
achieved by cross-sectional shrinkage. Increasing the cross-sectional shrinkage 
parameter to infinity yields filters for all variables to converge, and d.f. to reduce. 
Thus, increasing the extent of cross-sectional shrinkage does not yield a fatal 
outcome and, thus, is less harmful than increasing the extent of longitudinal 
shrinkage. This consideration can be viewed as satisfactory at least for sufficiently 
homogeneous datasets, which is the case for the EA dataset because it is dominated 
by a large number of survey data. Indeed, for the EA dataset, increasing the cross-
sectional shrinkage parameter to, say, ߣ௖ ൌ 20, would yield less d.f. but hardly any 
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difference in the filter output. Yet, there is a good reason to allow some d.f. for the 
filter if the input dataset is heterogeneous. 

The filter coefficients and amplitudes are shown in Figures 11a and 11b 
respectively. The figure labels are removed due to over-cluttering. 

Figure 11 
Concurrent 72-variable filter with second order constraint, ࢎ ൌ ૙, ࢊࣅ ൌ ૙. ૛, ࢉࣅ ൌ ૞ 

 

Notes: (a) Coefficients for concurrent 72-variable filter with second order constraint, ݄ ൌ 0, 
ௗߣ ൌ ௖ߣ ,0.2 ൌ 5; (b) filter amplitudes corresponding to coefficients in Figure 11a. 
 
The resulting filter coefficients and amplitudes look plausible. The coefficients for 
small lags are positive and decay smoothly to zero with a higher lag order. Filters 
with coefficients that do not shrink to zero at higher lag orders can be argued to be 
suboptimal or incomplete. The amplitudes also look plausible: there is some d.f. so 
that they are not the same for all variables but they are still close to each other, have 
the most weight in the passband, and decay towards zero in the stopband. 

The filter's simulated real-time output for the last ten years is shown in Figure 12 
along with another established indicator – the Eurocoin (Altissimo et al. (2010)), 
with the latter being transformed to yearly growth rates. The particular parameter 
setting results in about three e.d.f. on average over the whole sample. 

Figure 12 shows that the filter output precedes the Eurocoin on several occasions, 
and that the Eurocoin is actually lagging w.r.t. GDP growth in several episodes. 
Since both indicators target a lowpass of the observed GDP series, traditional mean 
squared error criterion is not suitable for a formal comparison of indicators. Instead, 
dynamic correlation between an indicator and the GDP is used. The peak correlation 
between Eurocoin and GDP is found to be at a zero lag w.r.t. GDP, while the second 
highest correlation being at a one month lag w.r.t. GDP. For the output of RMDFA 
as in Figure 12, the peak correlation is at one month lead w.r.t. GDP, and the second 
highest correlation located at a two months lead w.r.t. GDP (see Table A1). 
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Figure 12 
Output of regularised 72-variable filter with ࢎ ൌ ૙, ࢊࣅ ൌ ૙. ૛, ࢉࣅ ൌ ૞ 

 

Note: Output of the filter tracking trendcycle in y-o-y EA GDP versus Eurocoin transformed to 
represent yearly growth rates. 

Forecasting 

This paragraph shows that the regularised filter can be used not only for a concurrent 
signal extraction but also for forecasting. Figures 13a and 13b show coefficients and 
amplitudes for the filter targeting a lead of three months w.r.t. the target signal. This 
is done by setting ݄ ൌ െ3 in formulas (18), (29), (30), and (31). The rest of filter 
parameters are left unchanged, i.e., ߣௗ ൌ 0.2 and ߣ௖ ൌ 5. This is an example of 
direct forecasting as opposed to iterated forecasting. Figures 13a and 13b show that 
the filter coefficients and amplitudes are slightly more dispersed than in the 
coincident case. Repeating the exercise with an increased target lead of six months 
(݄ ൌ െ6) (with other filter parameters unchanged), yields filter coefficients and 
amplitudes as plotted in Figures 14a and 14b, which show even more dispersed 
coefficients and amplitudes. 

Figure 13 
72-variable filter with second order constraint, ࢎ ൌ െ૜, ࢊࣅ ൌ ૙. ૛, ࢉࣅ ൌ ૞ 

 

Notes: (a) Coefficients for a 72-variable filter with second order constraint, ݄ ൌ െ3, ߣௗ ൌ 0.2, 
௖ߣ ൌ 5; (b) filter amplitudes corresponding to coefficients in Figure 13a. 
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Figure 14 
72-variable filter with second order constraint, ࢎ ൌ െ૟, ࢊࣅ ൌ ૙. ૛, ࢉࣅ ൌ ૞ 

 

Notes: (a) Coefficients for a 72-variable filter with second order constraint, ݄ ൌ െ6, ߣௗ ൌ 0.2, 
௖ߣ ൌ 5; (b) filter amplitudes corresponding to coefficients in Figure 14a. 
 
The corresponding effective degrees of freedom are 16 (for three-month lead) and 
23 (for six-month lead) as opposed to five e.d.f. for the concurrent filter. The 
increase of e.d.f. with the targeted lead can be explained intuitively by the fact that 
the filter has more freedom to chose which series will have what weight at what 
lead/lag in order to achieve the desired outcome. The longer way to go, the more 
possible ways can be chosen in order to get to the predestined place. A practitioner 
might set a more stringent shrinkage with higher targeted lead in order to achieve the 
desired degrees of freedom, yet it might be argued that it is intuitively unappealing 
to do so, since the filter should be free enough to differentiate between series when it 
comes to targeting high leads. 

The resulting real-time outputs of filters targeting three- and six-month leads are 
shown in Figures 15a and 15b respectively together with the Eurocoin. 

Figure 15 
Filter output targeting three- and six-month lead versus Eurocoin 
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Notes: (a) Filter output corresponding to filter coefficients in Figure 12 (targeting 3-month lead) 
versus Eurocoin (yearly growth rates); (b) filter output corresponding to filter coefficients in 
Figure 13 (targeting 6-month lead) versus Eurocoin (yearly growth rates). 
 
Figures 15a and 15b show that the resulting lead of filter output is moderate but 
existent, with biggest noticeable gains in signalling recovery during the 2009 
recession and downward movement in the 2012 downturn. The level fit worsens 
with a higher targeted lead but this is an expected result in any forecasting exercise. 
For the filter output in Figure 15a, the peak correlation is at a three-month lead w.r.t. 
GDP, with the second highest correlation being located at a four-month lead w.r.t. 
GDP. For the filter output in Figure 15b, the peak correlation is located at a five-
month lead w.r.t. GDP, with the second highest correlation being at a six-month lead 
w.r.t. GDP (see Table A1). 

Having created the filter design for tracking trendcycle in the yearly growth of EA 
GDP, we now turn to designing a filter for tracking of trendcycle in the quarterly 
growth of EA GDP. 

2.2 Tracking trendcycle in quarterly growth of GDP 

2.2.1 Target and data 

The filter is set to target an ideal lowpass of quarterly growth of real GDP with cut-
off wave length 12 months. The GDP data are linearly interpolated to monthly 
frequency, logged and quarterly differenced. A full list of data transformations is 
presented in Appendix. 

2.2.2 Indicator design 

There are two main differences of this design w.r.t. the yearly growth design. First, 
the monthly differenced data are more volatile than the yearly differenced ones. 
Thus, a smooth signal extraction requires more noise suppression/tighter 
regularisation. Second, the main explanatory variables are business and consumer 
survey data, since they are published with almost no delay and have been found to 
correlate well with GDP. In the previous subsection, it was shown that undifferenced 
survey data are about coincident with the yearly growth of GDP. Thus, 
undifferenced survey data are lagging w.r.t. quarterly growth of GDP. Therefore, 
forecasting (݄ ൏ 0) should be involved in order to get a coincident quarterly growth 
signal. (Otherwise, a practitioner could difference survey data, but regularly 
differenced survey data overshoot after the great recession and, strictly speaking, are 
over-differenced, since undifferenced survey data are not integrated.) 

Given the above considerations, we will show the results of two different 
specifications with and without amplitude constraints. More noise suppression can 
be accomplished with a tighter shrinkage, specifically by raising lag decay and 
cross-sectional shrinkage parameters. However, it was argued in the previous 
subsection that a tight cross-sectional shrinkage might be suboptimal if forecasting is 
involved. Therefore, an amplitude constraint might be used as an additional 
constraint that reduces degrees of freedom to which we now turn. 

Filter with amplitude constraint 

An amplitude constraint can help contain the filter output on the right level but it 
also counteracts with the time shift constraint by partly neutralising the latter's 



27 

FORECASTING AND SIGNAL EXTRACTION WITH REGULARISED MULTIVARIATE DIRECT FILTER APPROACH 
 

 

effect. Therefore, the lead for the time shift constraint is set to six months (݄ ൌ െ6). 
Also, given that the data set can be heterogeneous, the value of amplitude constraint 
at frequency zero equal for all series might be suboptimal. Therefore, we here 
differentiate that value to be proportional to the in-sample correlation of explanatory 
series with GDP (though the result is close to what would be obtained with equal 
weights). The lag decay parameter has been increased to ߣௗ ൌ 0.4, and the cross-
sectional shrinkage parameter has been decreased to ߣ௖ ൌ 1. This setting gives about 
three e.d.f., thus more cross-sectional shrinkage is unnecessary. The filter 
coefficients and amplitudes are plotted in Figures 16a and 16b. 

Figure 16 

72-variable filter with both first and second order constraints, ࢎ ൌ െ૟, ࢊࣅ ൌ ૙. ૝, ࢉࣅ ൌ ૚ 

 
Notes: (a) Coefficients for 72-variable filter with both first and second order constraints, ݄ ൌ െ6, 
ௗߣ ൌ ௖ߣ ,0.4 ൌ 1; (b) filter amplitudes corresponding to coefficients in Figure 16a. 

The resulting real-time filter output is plotted in Figure 17 along with the Eurocoin. 

Figure 17 
Filter output corresponding to filter coefficients in Figure 16 versus Eurocoin 

 
 
Figure 17 shows that the filter output tracks the level of the target well and precedes 
the Eurocoin on several occasions. The peak correlation of Eurocoin with GDP is 
located at a two-month lag w.r.t. GDP, with the second highest correlation being 
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located at a one-month lag w.r.t. GDP. For the RMDFA output in Figure 17, the 
peak correlation is located at a one-month lag w.r.t. GDP, with the second highest 
correlation being at a zero-month lag w.r.t. GDP (see Table A1). 

Note that the true real-time performance of Eurocoin begins in mid-2009; after that 
period, the difference between the performance of the two indicators is slightly more 
evident. 

Filter without amplitude constraint 

With the amplitude constraint absent, it does not interfere with the shift constraint, 
thus the targeted lead can be reduced to three months (݄ ൌ െ3). Also, the absence of 
the first order constraint means more degrees of freedom, therefore shrinkage should 
be tightened by increasing the cross-sectional shrinkage parameter back to ߣ௖ ൌ 5. 
This setting gives about eight e.d.f. Filter coefficients and amplitudes are plotted in 
Figures 18a and 18b. 

Figure 18 
72-variable filter with second order constraint, ࢎ ൌ െ૜, ࢊࣅ ൌ ૙. ૝, ࢉࣅ ൌ ૞ 

 

Notes: (a) Coefficients for 72-variable filter with second order constraint, ݄ ൌ െ3, ߣௗ ൌ 0.4, 
௖ߣ ൌ 5; (b) filter amplitudes corresponding to coefficients in Figure 18a. 
 
Additional noise suppression can be achieved by suppressing amplitudes in the 
stopband with a positive ݁ݓ݌ݔ parameter (see expression (8)). Particularly, the noise 
suppression parameter is set to ݁ݓ݌ݔ ൌ 0.5, which is a standard value across 
applications (see Bušs (2012) for a similar application). Since ݁ݓ݌ݔ is not among 
regularisation parameters, it counteracts, to some extent, to the regularisation so that 
the e.d.f. increase to about 12. The filter coefficients and amplitudes are plotted in 
Figures 19a and 19b. 

The differences between the two cases are small but evident: an additional noise 
suppression in the stopband slightly reduces the amplitude dispersion and lowers 
their weights on higher frequencies. The result is a slightly slower but smoother 
filter output (see Figures 20a and 20b) for without noise suppression (݁ݓ݌ݔ ൌ 0) 
and with a moderate noise suppression (݁ݓ݌ݔ ൌ 0.5) respectively. In both cases, the 
peak correlation with GDP is located at a one-month lag w.r.t. GDP, with the second 
highest correlation being located at a zero-month lag w.r.t. GDP (see Table A1). 
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Figure 19 
72-variable filter with second order constraint, ࢎ ൌ െ૜, ࢊࣅ ൌ ૙. ૝, ࢉࣅ ൌ ૞, ࢝࢖࢞ࢋ ൌ ૙. ૞ 

 

Notes: (a) Coefficients for 72-variable filter with second order constraint, ݄ ൌ െ3, ߣௗ ൌ 0.4, 
௖ߣ ൌ ݓ݌ݔ݁ ,5 ൌ 0.5; (b) filter amplitudes corresponding to coefficients in Figure 19a. 
 

Figure 20 
Output of 72-variable filter with second order constraint, ࢎ ൌ െ૜, ࢊࣅ ൌ ૙. ૝, ࢉࣅ ൌ ૞ 

 

Notes: (a) Filter output corresponding to filter coefficients in Figure 18a versus Eurocoin; (b) 
filter output corresponding to filter coefficients in Figure 19a versus Eurocoin. 
 
Increasing targeted lead to ݄ ൌ െ6 and noise suppression to ݁ݓ݌ݔ ൌ 1 yields filter 
coefficients and amplitudes shown in Figures 21a and 21b respectively, and the real-
time filter output in Figure 22. 
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Figure 21 
72-variable filter with second order constraint, ࢎ ൌ െ૟, ࢊࣅ ൌ ૙. ૝, ࢉࣅ ൌ ૞, ࢝࢖࢞ࢋ ൌ ૚ 

 

Notes: (a) Coefficients for 72-variable filter with second order constraint, ݄ ൌ െ6, ߣௗ ൌ 0.4, 
௖ߣ ൌ ݓ݌ݔ݁ ,5 ൌ 1; (b) filter amplitudes corresponding to coefficients in Figure 21a. 
 

Figure 22 
Filter output corresponding to filter coefficients in Figure 21a versus Eurocoin 

 
 
The in-sample size at the beginning of estimation is evidently too short; after a short 
time, the filter output stabilises and evidently outperforms the Eurocoin w.r.t. 
timeliness on several occasions but clearly after 2009. The peak correlation with 
GDP is located at a zero-month lag w.r.t. GDP, with the second highest correlation 
being at a one month lead w.r.t. GDP (see Table A1). 

The following section checks the filter performance on a less homogeneous dataset 
for Latvia. 

 

3. ROBUSTNESS CHECK ON LESS HOMOGENEOUS DATASET FOR LATVIA 

Latvia's dataset contains 40 explanatory variables: 30 business and consumer 
variables for Latvia, the EA, Estonia and Lithuania, three industrial production 
indices for the EA, registered unemployment, job vacancies, monetary aggregates 
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M1 and M3, currency in circulation, volume index of exports of goods, and the 
budget income variable. Many relevant variables are not included due to their short 
sample size or strong seasonality; those variables could be seasonally adjusted and 
extrapolated with an expectation-maximisation algorithm, yet it is not done for 
simplicity. In fact, some of the included variables (volume of exports, budget 
income, monetary aggregates, employment variables) are seasonal but seasonality is 
not dealt with or checking for outliers performed. Several variables were found to 
have low correlation with the target variable but none was excluded. Integrated 
series were made non-integrated by suitable transformations. Appendix lists the data 
and transformations. 

There is a difference between applying the filter to the EA or Latvia's datasets. 
Particularly, Latvia's survey data have been found to yield better explanatory power 
for quarterly growth of Latvia's GDP when they are regularly differenced. Thus, all 
data, including the survey data, are regularly differenced when the target is the 
quarterly growth of GDP. However, differenced survey data overshoot after the 
great recession. Therefore, in order to lessen the impact of differenced survey data 
on the outcome, Latvia's GDP series is included in the set of explanatory variables 
as well. In order to produce close to real-time performance, flash GDP values 
(released about 45 days after the reference period) are not used, as well as the first 
releases (published about 65 days after the reference period) are dropped off. Thus, 
the GDP series lags survey data by 7 months. The presence of GDP in the set of 
explanatory variables makes Latvia's dataset considerably less homogeneous than 
that of the EA. 

No filter constraints are imposed. Regarding regularisation parameters, the lag decay 
parameter is set to the value which is used in the EA application, ߣௗ ൌ 0.2; the 
cross-sectional shrinkage parameter, however, is set to be much lower, ߣ௖ ൌ 0.2, 
which can be explained by the more heterogeneous dataset and the presence of GDP 
series in the dataset in particular. If the cross-sectional shrinkage parameter is 
increased, the filter coefficients on GDP series are shrunk towards the rest of filter 
parameters; since the latter are dominated by survey data that overshoot after the 
great recession, it means that the increase of the cross-sectional shrinkage leads to a 
more timely extracted signal and also that it overshoots more after the great 
recession. There is also another reason for keeping the cross-sectional shrinkage 
parameter low: heterogeneous data might contain irrelevant variables (the variables 
were not subject to scrutinised pre-screening except for changing the signs of 
negatively correlated variables), and, thus, forcing all the filters to have the same 
coefficients might be considered suboptimal. 

Given the absence of filter constraints and the small values of regularisation 
parameters, the effective degrees of freedom are quite large (60) compared to the EA 
application in the previous section; it is, however, still much less than the number of 
estimated filter coefficients (41 × 12 = 492). The filter coefficients and amplitudes 
are shown in Figures 23a and 23b. 
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Figure 23 
41-variable filter, ࢊࣅ ൌ ૙. ૛, ࢉࣅ ൌ ૙. ૛ 

 

Notes: (a) Coefficients for 41-variable filter, ߣௗ ൌ ௖ߣ ,0.2 ൌ 0.2; (b) filter amplitudes 
corresponding to coefficients in Figure 23a. 

 
One series clearly stands out, and it is the GDP series, which has a higher weight 
than the rest. There are also a couple of series with practically zero coefficients and 
amplitudes; although these series can be considered irrelevant, they are not excluded 
from the dataset for simplicity and also because this is a high-dimensional filtering 
exercise, which suggests, by its name, that there might be irrelevant variables that 
should not necessarily be excluded to obtain a decent outcome. 

The resulting real-time filter output for the last 10 years is shown in Figure 24 along 
with the quarterly growth of Latvia's GDP and pseudo real-time values of the 
Latcoin indicator (Beņkovskis (2010), although since then its design has been 
slightly changed), which is a real-time indicator for Latvia's GDP computed using a 
Eurocoin-type methodology (Altissimo et al. (2010)). 

Figure 24 
Filter output corresponding to filter coefficients in Figure 23a versus Latcoin 
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Figure 24 shows that the filter output is almost coincident with the Latcoin yet 
smoother during the great recession period and slightly faster during the recovery 
phase. It also appears to be more robust for smaller samples despite more parameters 
contained. The peak correlations indicate that both indicators are almost coincident 
with GDP (see Table A1). 
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CONCLUSIONS 

Nowadays information is abundant. New statistical tools suitable to process large 
information for a particular problem at hand are emerging. This paper considers 
regularised multivariate direct filter approach (Wildi (2012)) as a tool for signal 
extraction and forecasting using high-dimensional datasets. The paper studies filter 
properties by tracking the medium-to-long-run component of the EA GDP growth 
using an up to 72-variable filter. It is shown that the filter can be successfully 
applied to high-dimensional datasets. The particular application replicates the 
behavior of the established Eurocoin indicator and produces more timely indicators 
as well. 

As a robustness check, another application considers a more heterogeneous dataset 
for Latvia. It is shown that such a dataset requires less stringent cross-sectional 
shrinkage; a moderate longitudinal and cross-sectional shrinkage of a 41-variable 
dataset can, at the same time, yield satisfactory outcomes. 

Overall, the RMDFA is found to be a promising tool for both signal extraction and 
forecasting using high-dimensional datasets; particularly, it might become a decent 
competitor to such established methods as the dynamic factor methodology. 

APPENDIX 

Table A1  
Dynamic correlations of indicators with GDP growth rates 

Indicators Dynamic correlation at lag: 
–3 –2 –1 0 1 2 3 4 5 6 

Eurocoin, y-o-y  0.921 0.963 0.985∗ 0.986∗∗ 0.967 0.930 0.874 0.804 0.722 0.631 
RMDFA in Fig. 12  0.775 0.840 0.893 0.930 0.949∗∗ 0.946∗ 0.921 0.876 0.812 0.736 
RMDFA in Fig. 15a 0.551 0.642 0.730 0.807 0.872 0.918 0.941∗∗ 0.938∗ 0.912 0.867 
RMDFA in Fig. 15b 0.310 0.408 0.511 0.610 0.704 0.787 0.852 0.893 0.907∗∗ 0.896∗
Eurocoin  0.852 0.882∗ 0.879∗ 0.849 0.792 0.706     
RMDFA in Fig. 17  0.774 0.846 0.883∗∗ 0.870∗ 0.819 0.736     
RMDFA in Fig. 20a  0.751 0.824 0.869∗∗ 0.862∗ 0.817 0.740     
RMDFA in Fig. 20b 0.790 0.849 0.876∗∗ 0.856∗ 0.799 0.709     
RMDFA in Fig. 22  0.680 0.780 0.849 0.874∗∗ 0.858∗ 0.810     
Latcoin in Fig. 24  0.685 0.716 0.747∗∗ 0.744∗ 0.713 0.668     
RMDFA in Fig. 24  0.664 0.723 0.769∗∗ 0.762∗ 0.755 0.742     

Note:	∗∗ marks the peak correlation; 	∗ marks the second highest correlation.  
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Table A2 
EA dataset 

Variable   Source   Transf. y-o-y  Transf. q-o-q 
Real GDP, chain-linked, EA, SA   Eurostat  Δଵଶlog,lin.interp.  log,lin.interp. 
Production trend observed in recent month (industry), EA, SA   DG Ecfin  –  –
Assessment of order-book levels (industry), EA, SA   DG Ecfin  –  –
Assessment of export order-book levels (industry), EA, SA   DG Ecfin  –  –
Assessment of stocks of finished products (industry), EA, SA   DG Ecfin  –  –
Production expectations for months ahead (industry), EA, SA   DG Ecfin  –  –
Selling price expectations for months ahead (industry), EA, SA   DG Ecfin  –  –
Employment expectations for months ahead (industry), EA, SA   DG Ecfin  –  –
Confidence indicator in services, EA, SA   DG Ecfin  –  –
Business situation development over past 3 months (services), EA, SA   DG Ecfin  –  –
Evolution of demand over past 3 months (services), EA, SA   DG Ecfin  –  –
Expectation of demand over next 3 months (services), EA, SA   DG Ecfin  –  –
Evolution of employment over past 3 months (services), EA, SA   DG Ecfin  –  –
Consumer confidence indicator, EA, SA   DG Ecfin  –  –
Financial situation over last 12 months (consumers), EA, SA   DG Ecfin  –  –
Financial situation over next 12 months (consumers), EA, SA   DG Ecfin  –  –
General economic situation over last 12 months (consumers), EA, SA   DG Ecfin  –  –
General economic situation over next 12 months (consumers), EA, SA   DG Ecfin  –  –
Price trends over next 12 months (consumers), EA, SA   DG Ecfin  –  –
Unemployment expectations over next 12 months (consumers), EA, SA   DG Ecfin  –  –
Major purchases at present (consumers), EA, SA   DG Ecfin  –  –
Savings over next 12 months (consumers), EA, SA   DG Ecfin  –  –
Confidence indicator in retail, EA, SA   DG Ecfin  –  –
Business activity (sales) development over past 3 months (retail), EA, SA  DG Ecfin  –  –
Volume of stock currently hold (retail), EA, SA   DG Ecfin  –  –
Orders expectations over next 3 months (retail), EA, SA   DG Ecfin  –  –
Business activity expectations over next 3 months (retail), EA, SA   DG Ecfin  –  –
Employment expectations over next 3 months (retail), EA, SA   DG Ecfin  –  –
Confidence indicator in construction, EA, SA   DG Ecfin  –  –
Building activity development over past 3 months (construction), EA, SA  DG Ecfin  –  –
Employment expectations over next 3 months (construction), EA, SA   DG Ecfin  –  –
Prices expectations over next 3 months (construction), EA, SA   DG Ecfin  –  –
Production trend observed in recent month (industry), DE, SA   DG Ecfin  –  –
Assessment of order-book levels (industry), DE, SA   DG Ecfin  –  –
Assessment of stocks of finished products (industry), DE, SA   DG Ecfin  –  –
Production expectations for months ahead (industry), DE, SA   DG Ecfin  –  –
Employment expectations for months ahead (industry), DE, SA   DG Ecfin  –  –
Confidence indicator in construction, DE, SA   DG Ecfin  –  –
Confidence indicator in retail, DE, SA   DG Ecfin  –  –
Consumer confidence indicator, DE, SA   DG Ecfin  –  –
Confidence indicator in services, DE, SA   DG Ecfin  –  –
Production trend observed in recent month (industry), FR, SA   DG Ecfin  –  –
Assessment of order-book levels (industry), FR, SA   DG Ecfin  –  –
Assessment of stocks of finished products (industry), FR, SA   DG Ecfin  –  –
Production expectations for months ahead (industry), FR, SA   DG Ecfin  –  –
Employment expectations for months ahead (industry), FR, SA   DG Ecfin  –  –
Confidence indicator in construction, FR, SA   DG Ecfin  –  –
Confidence indicator in retail, FR, SA   DG Ecfin  –  –
Consumer confidence indicator, FR, SA   DG Ecfin  –  –
Confidence indicator in services, FR, SA   DG Ecfin  –  –
Production trend observed in recent month (industry), IT, SA   DG Ecfin  –  –
Assessment of order-book levels (industry), IT, SA   DG Ecfin  –  –
Assessment of stocks of finished products (industry), IT, SA   DG Ecfin  –  –
Production expectations for months ahead (industry), IT, SA   DG Ecfin  –  –
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Variable   Source   Transf. y-o-y  Transf. q-o-q 
Employment expectations for months ahead (industry), IT, SA   DG Ecfin  –  –
Confidence indicator in construction, IT, SA   DG Ecfin  –  –
Confidence indicator in retail, IT, SA   DG Ecfin  –  –
Consumer confidence indicator, IT, SA   DG Ecfin  –  –
Production trend observed in recent month (industry), ES, SA   DG Ecfin  –  –
Assessment of order-book levels (industry), ES, SA   DG Ecfin  –  –
Assessment of stocks of finished products (industry), ES, SA   DG Ecfin  –  –
Production expectations for months ahead (industry), ES, SA   DG Ecfin  –  –
Employment expectations for months ahead (industry), ES, SA   DG Ecfin  –  –
Confidence indicator in construction, ES, SA   DG Ecfin  –  –
Confidence indicator in retail, ES, SA   DG Ecfin  –  –
Consumer confidence indicator, ES, SA   DG Ecfin  –  –
Confidence indicator in services, ES, SA   DG Ecfin  –  –
Industrial production index B–D;F, EA, SA   Eurostat  Δଵଶlog  Δlog
Industrial production index C, EA, SA   Eurostat  Δଵଶlog Δlog
Producer price index C, EA, NSA   Eurostat  Δଵଶlog  Δlog
Turnover index in retail trade except for motor vehicles, deflated, EA, 
NSA  

 Eurostat  Δଵଶlog  Δlog

US share price index, US, NSA   Eurostat  Δଵଶlog Δlog
EA share price index, EA, NSA   Eurostat  Δଵଶlog  Δlog

 

Table A3 
LV dataset 

Variable   Source  Transformation 
Real GDP, chain-linked, LV, SA   Eurostat  Δlog,lin.interp. 
Production trend observed in recent month (industry), LV, SA   DG Ecfin  Δ
Assessment of order-book levels (industry), LV, SA   DG Ecfin   Δ
Assessment of export order-book levels (industry), LV, SA   DG Ecfin  Δ
Assessment of stocks of finished products (industry), LV, SA   DG Ecfin  Δ
Production expectations for months ahead (industry), LV, SA   DG Ecfin   Δ
Selling price expectations for months ahead (industry), LV, SA   DG Ecfin  Δ
Employment expectations for months ahead (industry), LV, SA   DG Ecfin   Δ
Consumer confidence indicator, LV, SA   DG Ecfin  Δ
Confidence indicator in retail, LV, SA   DG Ecfin  Δ
Business activity (sales) development over past 3 months (retail), LV, SA  DG Ecfin   Δ
Volume of stock currently held (retail), LV, SA   DG Ecfin  Δ
Orders expectations over next 3 months (retail), LV, SA   DG Ecfin   Δ
Business activity expectations over next 3 months (retail), LV, SA   DG Ecfin  Δ
Employment expectations over next 3 months (retail), LV, SA   DG Ecfin  Δ
Confidence indicator in construction, LV, SA   DG Ecfin   Δ
Building activity development over past 3 months (construction), LV, SA  DG Ecfin  Δ
Confidence indicator in industry, EU, SA   DG Ecfin  Δ
Consumer confidence indicator, EU, SA   DG Ecfin   Δ
Confidence indicator in retail, EU, SA   DG Ecfin  Δ
Confidence indicator in construction, EU, SA   DG Ecfin   Δ
Economic sentiment indicator, EU, SA   DG Ecfin  Δ
Confidence indicator in industry, EE, SA   DG Ecfin  Δ
Consumer confidence indicator, EE, SA   DG Ecfin   Δ
Confidence indicator in retail, EE, SA   DG Ecfin  Δ
Confidence indicator in construction, EE, SA   DG Ecfin   Δ
Economic sentiment indicator, EE, SA   DG Ecfin  Δ
Confidence indicator in industry, LT, SA   DG Ecfin  Δ
Confidence indicator in retail, LT, SA   DG Ecfin   Δ
Confidence indicator in construction, LT, SA   DG Ecfin  Δ
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Variable   Source  Transformation 
Economic sentiment indicator, LT, SA   DG Ecfin  Δ
Industrial production index B–D; F, EA, SA   Eurostat   Δlog
Industrial production index C, EA, SA   Eurostat  Δlog
Industrial production index D, EA, SA   Eurostat   Δlog
Registered unemployment, LV, NSA   CSB  Δ
Job vacancies, LV, NSA   CSB  Δ
Monetary aggregate M1, LV, NSA   Bank of Latvia   Δlog
Monetary aggregate M3, LV, NSA   Bank of Latvia  Δlog
Currency in circulation (average), LV, NSA   Bank of Latvia   Δlog
Volume index of exports of goods, LV, NSA   CSB  Δlog
Budget income, LV, NSA   State Revenue Service  Δlog
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