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Abstract: We use U.S. county-level data to estimate convergence rates for 22 individual 
states.  We find significant heterogeneity. E.g., the California estimate is 19.9 percent and 
the New York estimate is 3.3 percent. Convergence rates are essentially uncorrelated with 
income levels. 
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1.  Introduction 

Empirical conditional convergence studies implicitly assume that all economies follow 

identical growth processes and that, therefore, it is meaningful to estimate a single rate of 

convergence. However, Evans (1998) argues that this is implausible for most data sets 

because countries (p. 296) "… have different technologies, preferences, institutions, 

market structures, etc."1 

We use county-level data from 22 individual states, comprising a total of 1,921 U.S. 

counties to study heterogeneity in convergence rates. The data include per capita income 

growth and 29 other conditioning variables. Conditional on the latter, we report separate 

convergence rate estimates for each of these 22 states.   

Existing studies of heterogeneity in growth represent a range of ingenious econometric 

techniques designed to cope with a limited number of observations typically available for 

growth studies.2 Given the richness of our data, we are able to explore heterogeneity in 

convergence rates amongst the U.S. states by incorporating a large number of 

demographic and socio-economic variables as controls.  

Our data offer several other advantages. A single institution collects it, ensuring 

uniform variable definitions. There is no exchange rate variation between the counties 

and the price variation across counties is smaller than across countries, reducing the 

potential errors-in-variables bias (Bliss, 1999).3 Counties within a state form a sample 

with geographical homogeneity and a shared state government. To a great extent the 

states are ready-made “clubs” within which we would expect convergence. The large data 

set allows us to study inter-state heterogeneity, while the intra-state homogeneity 

increases the accuracy likelihood of the specification we employ.  

There are considerable per capita income differences across U.S. states. While Higgins 

et al. (2006) find that U.S. county-level data is well-described by conditional 

convergence, Young et al. (2008), using the same data, find that the actual dispersion of 

income levels is not decreasing. One possible explanation for this is that many individual 

states are not well-described by conditional convergence. Another possibility is that 

poorer economies have relatively low convergence rates. State-specific convergence rate 
                                                 
1 Levy and Dezhbakhsh (2003) provide international evidence on output fluctuation and shock persistence that may be 
considered an indirect evidence of such heterogeneity. 
2 See, e.g., Durlauf and Johnson (1995), Lee et al. (1997), Rappaport (2000), Brock and Durlauf (2001), Durlauf et al. 
(2001), and Rodrik (2013). See also the “club convergence” literature. For example, Quah (1996, 1997), Desdoigts 
(1999), and Canova (2004).  
3 These virtues are also embodied in state-level data (Barro and Sala-i-Martin, 1991, and Evans, 1997a).  State-level 
data, however, sacrifices the large number of observations we have.  All 22 states we study have counties numbering 
more than 50 (the number of U.S. states), and few of them twice as many and even more. 
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estimates can help in assessing the plausibility of this explanation. 

We find significant heterogeneity in the state-level convergence rates. Across the 22 

states, we obtain a range of point estimates including 2.7 percent (Georgia) and 19.9 

percent (California). The average convergence rate across these states is 9.2 percent. We 

also find that convergence rates and income levels are essentially uncorrelated, 

suggesting that poorer states are not at an inherent disadvantage in catching up to their 

richer counterparts. 

The paper is organized as follows. Section 2 discusses the model and our estimation 

strategy. Section 3 describes the data. Section 4 reports the findings. Section 5 concludes.  

 

2.  Econometric model 

As Barro and Sala-i-Martin (1992) show, the neoclassical growth model implies that 

nnnn xyg   00 , where ng  is the average growth rate of per capita income for 

economy n between years 0 and T,  is a function of the exogenous rate of technical 

progress, and  1 BTe T    with B representing the responsiveness of the average 

growth rate to the gap between the steady state income and the initial value, 0ny ; 0nx  is a 

vector of control variables,   is a coefficients' vector, and n  is a zero mean, finite 

variance error term. 

We adapt the basic growth model to panel data:  

nttntntnt xyg   0, ,     (1) 

where t indexes T = 5 year intervals that will begin, in our data, at 1970, 1975, 1980, 

1985, 1990, 1995, 2000, and 2005, and φt is a period fixed effect. For example, the first 

observation for a county n, will consist of 5/)( 1970,1975,1970, nnn yyg  , 1970,ny , and 1970,nx . 

We estimate (1) using generalized method of moments (GMM) including period fixed 

effects. Based on the estimate, ̂ , we calculate the convergence rate point estimate as 

  T
Tc

1ˆ11  . To calculate a 95 percent confidence interval we compute 

 ..96.1ˆ es , where s.e. is the standard error of ̂ . If the low value of the confidence 

interval is less than 1T  , the higher value is set equal to one. Note that in general, the 

resulting confidence intervals will be asymmetric around the point estimates (Evans 

1997b). 
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3.  U.S. county-level data 

We begin with U.S. county level data that include 3,057 county-level observations 

covering all 50 states from 1970 to 2010. However, statistically significant convergence 

rates estimates can only be computed for 22 states (constituted by 1,921 counties). We 

use the log of real per capita personal income net of transfers. We also start with 29 

conditioning variables that correspond approximately to the set used by Higgins, et al. 

(2006, 2009, 2010) and Young, et al. (2008).4 The panel has a time dimension of 8.  

Our identification strategy is to use lagged control variables as instruments. We 

initially run an OLS, period fixed effects regression of growth on initial income and all of 

the other controls. From that regression we identify 7 controls that are statistically 

insignificant. Of those we choose 4 to use as excluded instruments that create over-

identification in our GMM estimations.5 This decreases our time dimension to 7. 

 

4.  Convergence rate estimates 

Table 1 reports the asymptotic conditional convergence rate estimates with 95 percent 

confidence intervals for 22 individual U.S. states. Figure 1 presents confidence intervals 

as vertical bars around the point estimates. The individual state estimates vary 

significantly, indicating cross-state heterogeneity. The average estimate for the 22-state 

sample is 9.2 percent and for 4 states the point estimate exceeds 10 percent.6 Table 1 also 

reports J-statistics. At better than the 10 percent level the over-identifying restrictions are 

rejected only 3 times; only 2 times at better than the 5 percent level.  

Thus, there is considerable heterogeneity in the estimated convergence rates. The full 

picture that one gets from Table 1 and Figure 1 is of a group of economies with high 

                                                 
4 The conditioning variables are collected at the county level and include: land and water area per capita; percentage of 
5–13, 14–17, 18–64, and 65+ year olds; percentage of blacks and Hispanics; percentage of population with education of 
9–11 years, high school diploma, some college, and bachelor degree or more; percentage of population below the 
poverty line; percentage of the population employed by federal, state, and local governments; percentage of self-
employed; percentage of population employed in agriculture-fishing-and-forestry, construction, services, finance-
insurance-and-real-estate, manufacturing, mining, retail, transportation and public utilities, wholesale trade, college 
town and metro area indicators. The few differences in the control variable set used here versus Higgins et al. (2006) 
are the result of moving from a cross section of growth from 1970 to 1998 to the updated panel used here, from 1970 to 
2005. This required using BEA rather than Census data. The BEA, for example, collapses some industry categories into 
a single category and redefines others. 
5 Caselli, et al. (1996) suggest GMM estimation based on first differencing the growth equation. Bond, et al. (2001) 
suggest estimating a system including the first-differenced equation. We focus on the un-differenced growth equation 
because our controls represent evolving characteristics of economies; most of the information is in the levels. The 
excluded instruments are the college town indicator, the land area per capita, and the population percentages employed 
in transportation and public utilities and in wholesale trade. Of the other three not-significant controls from the OLS 
regression, two were educational attainment variables. The other was federal government employment that Higgins et 
al. (2010) find to be a robust correlate of growth. 
6 Kansas has an implausibly high estimate of about 47 percent and the confidence interval extends the graph to unity. 
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(typically above 5 percent) but often quite different rates of convergence. This 

heterogeneity should not be surprising. The convergence rate in the neoclassical growth 

model is a function of the technology and population growth rates, the depreciation rate, 

and the technology and preference parameters. Therefore, differences in the particular 

industries that predominate in an economy, cultural characteristics, and institutions may 

translate into different convergence rates.  

A simple OLS regression of the state convergence rate point estimates on average per 

capita income levels yields a partial correlation of 0.1677 and it not statistically 

significant. This suggests that poorer economies are not in general facing relatively poor 

convergence potentials. 

 

5.  Conclusions 

We use 1,921 U.S. county-level observations to explore the variation in income 

convergence across the U.S. states. Across 22 individual states, the estimated 

convergence rates average 9.2 percent. For 15 states the point estimate convergence rate 

is above 5 percent. We find substantial heterogeneity in individual state convergence 

rates. 

The high convergence rates are encouraging in the sense that, given proper policies to 

induce and support balanced growth paths, laggard economies can close the gap relatively 

quickly. Convergence rates are, in principle, functions of deep technology and preference 

parameters. If these deep parameters differ enough across U.S. states to create 

heterogeneous convergence, then one suspects that both the parameter and convergence 

rate differences might be meaningfully greater across countries.  
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Fig. 1. Point estimates of the within-state asymptotic convergence rates with 95% confidence intervals
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Table 1 
Asymptotic conditional convergence rates for 22 U.S. States using GMM: 
Point estimates with 95% confidence intervals 

 
 

State  No. of Counties Convergence Rate; Confidence Interval      J-stat 
 

United States     3,057   0.0058 (0.0029, 0.0086)    3.8680  
 

Alabama           67   0.0543 (0.0013, 0.1181)    0.0098 
Arkansas           74   0.1523 (0.0800, 0.2501)    0.0192 
California          58   0.1989 (0.0984, 0.3648)    2.9370* 
Colorado                    63   0.1915 (0.0822, 0.3829)     0.2804 
Georgia          159   0.0269 (0.0032, 0.0525)    0.5088 
Illinois          102   0.0565 (0.0319, 0.0832)   11.8745*** 
Indiana           92   0.0674 (0.0336, 0.1052)    0.0069 
Iowa           99   0.0399 (0.0083, 0.0749)    1.2048 

Kansas          105   0.4697 (0.1405, 1.0000)    0.1072 
Kentucky          120   0.0721 (0.0389, 0.1093)    0.0395 
Louisiana           64   0.0566 (0.0011, 0.1240)    4.0071 
Michigan           83   0.0376 (0.0158, 0.0609)    2.6696 
Mississippi          82   0.0955 (0.0355. 0.1705)    3.9598** 
Missouri          114   0.0401 (0.0074, 0.0766)    1.0675 
New York          62   0.0333 (0.0089, 0.0596)    0.6844 
North Carolina         100   0.0600 (0.0335, 0.0889)    0.0605 
Ohio           88   0.0558 (0.0250, 0.0899)     0.1431 
Oklahoma          77   0.0753 (0.0312, 0.1267)    0.0984 
Pennsylvania          67   0.0698 (0.0324, 0.1124)    1.3023 
Tennessee           95   0.0858 (0.0322, 0.1510)    0.6911 
Virginia           80   0.0474 (0.0150, 0.0833)    2.7240 
Wisconsin          70   0.0395 (0.0151, 0.0660)    0.6419 
 

   Total      1,921 
 

Note: Statistical significance at the 1, 5, and 10 percent levels, respectively, is denoted by 
***, **, and *. 

 
 


